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Figure 1: Users perform voice input using ProxiMic on a variety of devices, keeping the microphones close to their mouths. 

ABSTRACT 
Wake-up-free techniques (e.g., Raise-to-Speak) are important for 
improving the voice input experience. We present ProxiMic, a close-
to-mic (within 5 cm) speech sensing technique using only one 
microphone. With ProxiMic, a user keeps a microphone-embedded 
device close to the mouth and speaks directly to the device without 
wake-up phrases or button presses. To detect close-to-mic speech, 
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we use the feature from pop noise observed when a user speaks 
and blows air onto the microphone. Sound input is frst passed 
through a low-pass adaptive threshold flter, then analyzed by a 
CNN which detects subtle close-to-mic features (mainly pop noise). 
Our two-stage algorithm can achieve 94.1% activation recall, 12.3 
False Accepts per Week per User (FAWU) with 68 KB memory size, 
which can run at 352 fps on the smartphone. The user study shows 
that ProxiMic is efcient, user-friendly, and practical. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); Interaction techniques; Sound-based input / output. 
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voice input, sensing technique, activity recognition 
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1 INTRODUCTION 
Voice interaction is convenient, efcient, and intuitive, and there-
fore users complete a variety of tasks via voice input, including 
communication, text entry, and issuing commands [20, 23, 30, 31]. 
Despite its wide adoption, voice input still faces three challenges. 
First, the voice wake-up process can be lengthy. Second, such in-
teraction can be tedious and annoying especially during multiple 
rounds of voice input. Third, users risk exposing their privacy as 
their voices may be overheard or eavesdropped by a third party. 

Previous work has attempted to address each of the individual 
challenges above. Raise to Speak[52], PrivateTalk [47] and Prox-
iTalk [49] use a variety of sensors and device-related gestures to 
shorten the wake-up time for specifc devices. However, these tech-
niques are limited in their application by their requirements for 
multiple sensors or specifc device form factors. For multiple rounds 
of dialogue, voice input without repeated wake-up and interruption 
while listening and speaking at any time is still a challenging prob-
lem. Some existing works attempt to remedy this by using semantic 
understanding or sentiment analysis [27, 48], but it still cannot be 
completely solved due to the complexity of natural language. To 
address privacy issues, some prior work addressed how to perform 
completely silent speech, which means speaking but no sound is 
made [10, 18, 19]. However, due to the complex device requirements 
and limited distinguishable phrase set it supported, silent speech 
has not yet been popularized. 

We propose ProxiMic, a novel and low-cost input method that 
provides a solution to the above three challenges simultaneously 
by accurately detecting close-to-mic (within 5 cm) human voice. 
As shown in Figure 1, with ProxiMic, a user can position any 
microphone-embedded device close to the mouth, start speaking 
directly without wake-up phrases. By recognizing close-to-mic 
speech, ProxiMic can conveniently support multiple rounds of dia-
logue and interruption while speaking. In addition, ProxiMic sup-
ports whispering (speaking without vibrating the vocal-fold; airfow 
only), which can protect privacy. 

To detect close-to-mic speech, we use a Convolutional Neural 
Network (CNN) to capture subtle close-to-mic features, especially 
consonants with pop noise. Pop noise caused by air being blown 
onto the microphone while speaking (e.g., most English words 
containing "b,c,d,f,j,k,l,p,q,r,s,t,v,w,x,y,z" generate such airfow, and 
this airfow will generate a surge of amplitude of the audio signal). 
In addition, considering the high amplitude of pop noise, we design 
an Adaptive Amplitude Threshold Trigger (AATT) to flter out 
daily noise to reduce CNN calculation. The AATT+CNN two-stage 
detection pipeline allows us to recognize close-to-mic speeches 
with high accuracy, low power consumption, and low memory 
utilization. 

We conducted three studies to test the performance and usability 
of ProxiMic. 

In Study 1, we created data sets of four audio types from 102 
users on 55 devices and 49 diferent environments. We tested the 
performance of ProxiMic to reject false positives and recognize 
close-to-mic speeches on this data set. Key performance metrics for 
ProxiMic are comparable to that of Raise to Speak [52], with 94.1% 
activate recall and 12.3 False Accepts per Week per User (FAWU). 

In study 2, we conducted a preliminary user study to test the 
infuence of diferent factors. A white box analysis of the inter-
pretability of our CNN model shows that the model has indeed 
learned the joint features of pop-noise and human voice. We also 
conducted an ASR accuracy test, which verifed that pop-noise did 
not interfere with speech recognition. Then we tested diferent form 
factors to analyze the generalizability of the algorithm. In terms 
of privacy, we verifed that close-to-mic whispering which can be 
efectively recognized by ProxiMic is a private and efective voice 
input method, which can hardly be heard by other eavesdroppers. 

Finally, in study 3, we conducted a comparison user study to 
evaluate the user experience of ProxiMic. Results show that users 
consider ProxiMic to be efcient, user-friendly, and practical com-
pared to baseline activation methods. 

In sum, there are three main contributions in this paper: 
(1) We proposed a novel wake-up-free method that doesn’t re-

quire special gestures and complex sensors and can be de-
ployed on various forms of handheld and wearable devices. 

(2) We specifcally designed a two-stage algorithm for close-
to-mic speech recognition. By utilizing subtle close-to-mic 
features (mainly pop noise), ProxiMic provides a low-power, 
feasible, and practicable solution to voice activation. 

(3) We evaluated various boundary performances and user feed-
back of ProxiMic, which provide guidance for the deploy-
ment of real applications. 

2 RELATED WORK 

2.1 Activating Voice Input 
Using sensors to detect voice input events has been well studied. 
In the early years, voice activity detection (VAD) algorithms have 
been developed to detect the presence of human speech [32, 41, 
43]. The use of sound signals can detect the occurrence of various 
events [9, 28, 38]. Thanks to the robustness of Key Word Spotting 
(KWS) technology, the wake-up phrase as a signifcant event is 
used as the conventional activation method of voice assistants 
[12, 22, 39, 50]. However, because the wake-up phrase still faces 
problems such as cumbersome interaction, privacy, and security, the 
interest of researchers in recent years has gradually been attracted 
by various activation methods. Gaze wake-up is used for devices 
with relatively fxed positions, such as in-vehicles, smart speakers, 
etc. The user wakes up the voice input by looking at the device when 
speaking [26, 33]. PrivateTalk detects the hand pose of covering the 
mouth from one side to activate voice input for bluetooth earbuds 
[47]. FaceSight [46] deployed a camera on glasses to recognize the 
cover-mouth gesture to activate voice input in the AR scenario. 
Apple introduced a Raise to Speak feature to support wake-up-
free activation for smartwatches [1, 52] which requires 4 inches of 
vertical wrist movement. ProxiTalk [49] comprehensively uses the 
signals of the camera, IMU, and two microphones to implement the 
robust voice activation system for smartphone. Diferent from all 
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the above, ProxiMic uses only one microphone and close-to-mic 
speech to perform voice input without wake-up phrase. 

2.2 Privacy and Security of Voice Input 
Inconvenience of privacy risks is the important concern with voice 
input. Especially in public places, users are not inclined to use voice 
input [8]. Therefore, silent voice interface has become a direction 
of research. In order to achieve silent speech, researchers have 
proposed many methods such as Brain-Computer-Interface (BCI) 
[5, 29], and electromyography (EMG) [7, 18]. Sun et al.’s Lip-Interact 
[42] repurposes the front camera of smartphone to capture the 
user’s mouth movements and recognize 44 issued commands with 
an end-to-end deep learning model. AlterEgo [18] allows a user to 
silently converse with a computing device without any voice or any 
discernible movements by facial neuromuscular input. SottoVoce 
[19] uses a skin-contact ultrasonic sensor at the larynx to recognize 
tongue movements to achieve silent speech. EchoWhisper [11] 
leverages the Doppler shift of refection of near-ultrasound sound 
waves caused by the mouth and tongue movements to recognize 
45 words. SilentVoice [10] uses a device close to the mouth and 
adopts ingressive speech for silent voice input to ensure privacy, and 
recognizes the voice content only by the airfow sound generated by 
inhalation. Diferent from the above-mentioned methods, ProxiMic 
doesn’t seek completely silent speech. We hope to use an acceptable 
ultra-small volume from whispering to realize the voice interaction 
with a large word set for various everyday devices. 

2.3 Close-to-Mic Speech Detection 
The core of ProxiMic is to determine whether the source of the 
voice signal is close enough to the device. Shiota et al. [36, 37] used 
pop noise as a feature in voice liveness detection (VLD), which 
can be used to classify whether a given segment of human speech 
was spoken by a real person. We use the feature of pop noise too 
and further push it to voice activation techniques. We focus on the 
robustness of complex environments with low power consumption. 
Some works use mic-array to localize the sound source [6, 21, 34, 
35, 44, 45]. But for handheld and wearable devices, deploying the 
microphone array seems to be expensive. For the setting of two 
microphones, Volume Diference and Time Diference is the mainly 
methods to estimate the vocal distance [2, 3, 14]. ProxiTalk [49] 
has studied the distance classifcation task of smartphones with 
dual microphones. Because of the signifcant volume diference, 
it is usually easy to determine which one of the microphones is 
the sound source close to, but determining whether the sound 
source is close-to-mic (within 5 cm) is also challenging. Due to 
its simple hardware and easy deployment in embedded devices, 
the distance measurement method based on a single microphone 
has gradually attracted the interest of researchers in recent years 
[13]. In this work, we focus on single microphone, which can be 
applicable to various devices. We also believe that for the existing 
multi-microphone systems or devices with multi-sensors (e.g., IMU, 
camera, and proximity), we can get better close-to-mic detection 
performance by additionally using the unique features we utilized 
and the two-stage algorithm we presented. 

3 SIGNAL ANALYSIS OF CLOSE-TO-MIC 
SPEECH 

We conducted a pilot study to understand the characteristics of 
close-to-mic speech. We specifcally looked for features that showed 
potential to be easily computed on performance- and energy- con-
strained devices, while achieving high accuracy at the same time. 
We found two promising features, namely sound amplitude and 
spectrogram characteristics of pop noise, which we detail below. 

3.1 Collecting Audio Samples 
We recruited three participants from the university campus for this 
study. For each participant, we conducted the experiment in eight 
diferent environments and we asked them to speak close to an 
on-device microphone while we collected data for their close-to-
mic speech. Nowadays, almost all of the microphones of wearable 
devices and handheld devices are Electret Condenser Microphone 
(ECM) or Micro-Electro-Mechanical System (MEMS) which have 
similar acoustic characteristics, so in this study, we choose the 
internal microphone (MEMS) of a Huawei P30 smartphone for 
recording voice command. 

3.2 Sound Amplitude Characteristics 
By plotting the waveforms of recorded speech, we observe higher 
amplitudes when a person is speaking than that of background 
noise at all distances, but this is especially prominent for speech 
recorded at 2 cm from the microphone (Figure 2). This is because 
of the proximity of the sound source, as well as the presence of pop 
noise. Pop noise is produced when the weak airfow is generated 
by speaking causes strong vibrations in the microphone diaphragm 
nearby, which translates to high amplitudes in the audio signal. 

We then compare the amplitudes of speech with environmental 
noises (Figure 3). Again, close-to-mic speech within 5 cm produced 
higher amplitudes than that of all other noisy environments we 
sampled. 

3.3 Spectrogram Characteristics 
Spectrogram is the spectrum of frequencies of a signal as it varies 
with time, and it is an efective method for analyzing sound compo-
nents and timbre [16]. We plot the spectrogram for three types of 
speech recorded in the hospital hall (Figure 4). The green to yellow 
background color is mostly environmental noise. 

On the left is a reference sample containing normal voice recorded 
at a distance of 30 cm, where pop noise doesn’t appear. We note 
that vocal patterns can be observed mainly between the 200–800 Hz 
frequency range (colored in orange and red), and does not extend 
below 100 Hz (green). 

Pop noise can be clearly heard on the rest of the speech samples, 
and shows clear distinction from the 30 cm reference sample. Both 
samples captured at 2 cm show strong pop noise features, which are 
the vertical spikes in the spectrogram extending from 0 to around 
2000 Hz. In the close-up crops of the low-frequency range, the 
diference between the reference sample and close-to-mic speech is 
particularly prominent at around 50 Hz, as close-to-mic speech has 
more energy in the low-frequency region. This is consistent with 
Shiota et al.’s observation [37]. 
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Figure 2: An user read ["dZiN"tiæn"tiæn"tSi:"zen"m@"j2N] which 
means "how is the weather today" at six diferent distances 
with normal volume in a noisy hospital hall. Sound ampli-
tude is normalized between -1 and 1. 

level.png 

Figure 3: The 90th percentile amplitude with 10 ms of max-
imum flter in diferent settings, including speech. The am-
plitudes of close-to-mic speech at 2 cm and 5 cm are higher 
than that of the loudest environment noises recorded. 

When compared with normal voice at 2 cm, whispering, which 
can be considered as pop noise and airfow only speech, is relatively 
easy to distinguish due to its lack of 200–400 Hz vocals. This left 
the red vertical spikes narrower on the bottom, with wider gaps in 
between. 

Figure 4: The spectrogram of ["dZiN"tiæn"tiæn"tSi:"zen"m@"j2N] 
(means "how is the weather today") at three diferent dis-
tances in a noisy hospital hall. From left to right, the indi-
cated segments were recorded at 30 cm with normal voice 
(no pop noise), at 2 cm with normal voice (with strong pop 
noise), and at 2 cm with whispering (only pop noise and air-
fow), respectively. 0–200 Hz close-ups are provided below to 
illustrate low-frequency pop noise characteristics. 

3.4 Design Implication 
In light of the results from our feature analysis, we adopt a two-
stage approach to detect close-to-mic speech both accurately and 
efciently. 

The frst stage detector is based on the amplitude threshold. Due 
to the high amplitude of close-to-mic speech, we identify potential 
close-to-mic voice based on Adaptive Amplitude Threshold Trigger 
(AATT) to efectively flter out low energy noise with minimal 
calculation required. Due to the low-frequency characteristics of 
pop noise, we use a low-pass flter to enhance the performance 
of AATT. If the amplitude of audio signal exceeds the dynamic 
threshold of AATT, ProxiMic will extract a one-second audio clip 
and hand this raw signal input over to the second stage detector 
for refned detection. 

For the second stage detection, since pop noise has obvious spec-
trogram characteristics, we use the spectrogram-based Convolu-
tional Neural Network (CNN) for refned detection. Our white-box 
analysis below verifes that CNN indeed recognized mainly pop 
noise. 

All of the features we observed extended well below 4 kHz. In 
order to reduce power consumption and the usage of computing 
resources, we limit our sampling rate to 8 kHz for the rest of this 
paper. 

4 THE PROXIMIC DETECTOR 
We introduce the specifc parameters and components of the two-
stage algorithm here. 

4.1 Adaptive Amplitude Threshold Trigger 
Adaptive Amplitude Threshold Trigger (AATT) identifes potential 
close-to-mic speech by maintaining a threshold that matches the 
noise level. According to pop-noise’s strong low-frequency char-
acteristics, the signal frst passes through a frst-order low-pass 
flter with a cutof frequency at 50 Hz. If the amplitude of audio 
signal exceeds the dynamic threshold T , ProxiMic will extract a 
one-second audio clip and hand this raw signal input over to the 
CNN for refned detection. Figure 5 shows an example of the dy-
namic threshold and the high amplitude of close-to-mic speech 
signal (2 cm) in a noisy environment. 

Figure 5: Adaptive thresholding applied to a 300-second 
sound sample recorded at a busy crossroad, where the noise 
of cars and trucks can be heard constantly. A close-to-mic 
speech (2 cm) is marked by a red dot. The green line repre-
sents the adaptive amplitude threshold. In 77.5% of the time, 
background noise amplitude remains below the amplitude 
threshold. 

According to the output of CNN, we adjust the adaptive threshold 
T according to Equation 1. According to our experimental results 
below, we set the parameters Tlow , Thiдh , Alow , α , β , and γ to 
0.17, 0.8, 0.995, 0.01, 0.05, and 5 ∗ 10−5 respectively. This set of 
parameters allows the threshold to remain stable for one minute 
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in a noisy environment and return to the lowest level for up to 5 5 STUDY 1: ALGORITHM EVALUATION 
minutes in a quiet environment. In particular, to reduce the amount We collected three audio data sets in order to facilitate training and 
of calculation, we always refresh the threshold T with a one-second evaluation of ProxiMic. They are the voice commands data set D1, 
cycle instead of updating at 8 kHz. the comprehensive environmental background noise data set D2, 

and the extended everyday sound data set D3.    

accepted by CNN 5.1 ParticipantsTlow , 

min(Ak (Tk + α),Thiдh ), rejected by CNN (1) We recruited 102 participants for creating data set D1. 56 partici-
max(AkTk ,Tlow ), 

Tk+1 = 

reject by AATT pants were female and 46 were male, and the mean age was 25.9 
years old (SD = 8.1), ranging from 13 to 50. All participants speak 
Mandarin Chinese fuently and regularly use smartphones. For ob-
taining data sets D2 and D3, we did not recruit participants and 
recorded it ourselves. 

= 

   

Alow , accepted by CNN 

Ak + β(1 − Ak ), rejected by CNN (2) 
max((1 − γ )Ak , Alow ), 

Ak+1 5.2 Apparatus 
reject by AATT For creating data set D1, We asked the participants to bring their 

personal smartphones to the study. In total, the users brought 55 
diferent phone models from various manufacturers. With the par-
ticipants’ permission, we recorded all audio samples using their 
smartphones’ built-in sound recording application. All applications 
recorded stereo (dual-channel) raw audio signals without additional 
speech enhancement algorithms, such as multi-channel beamform-
ing, noise suppression as so on. We extracted the mono (single-
channel) raw signal from the main microphone, which was located 
on the bottom of all smartphones. We normalized the gain difer-
ence between devices for both training and testing, which ensures 
the direct superposition of noise and speech is correct. 

We created a voice interaction command corpus by referring to 
and summarizing the recommended command list of common voice 
assistants. In total, our corpus included 476 sentences of 25 types 
of interactive commands. Because of the participant demographics, 
the corpus was designed in Mandarin Chinese. 

For creating data set D2 and D3, we use Huawei P30, Honor 
V20 smartphone to record the background noise audio and use 
UMIK-1 microphone to record the environmental noise level (dB) 
of diferent scenes. 

5.3 Design and Procedure 
For data set D1, we included close-to-mic speech at diferent loud-
ness and close-to-mic whispers. Additionally, we included farther-
away but louder speech, which could be confused as close-to-mic 
speech based on amplitudes alone. 

We conducted our collection of data set D1 in an acoustically 
quiet lab setting. For each participant, we randomly shufed the 
corpus, and then divided it into four parts, each containing 119 sen-
tences. The experiment consisted four sessions corresponding to the 
four parts. Each session was randomly assigned one of the following 
four conditions: within 5 cm-loud, within 5 cm-soft, within 5 cm-
whisper, and 30 cm loud. For within 5 cm condition, we asked par-
ticipants to keep their mouth within 5 cm of the microphone. loud 
means speaking at a normal and comfortable volume, soft means 
deliberately lowering the volume and speaking softly and quietly 
(vocal-fold vibration), and whisper means keeping their vocal-fold 
silent (not vibrating and only airfow). For the 30 cm condition, 
we asked the participant to keep the microphone at least 30 cm 
away from their mouth and to record normal and loud voices. Out 

4.2 CNN-Based Spectrogram Detector 
In the second stage, we employ spectrogram features to determine 
if a sound snippet is close-to-mic speech through a CNN classifer. 
Whenever an audio segment passes the amplitude threshold in the 
frst stage, the CNN calculates features from a one-second audio 
snippet centered around that audio segment, which is then passed 
on to the CNN classifer. This leads to a 0.5s latency required for 
CNN detection. Figure 6 shows the structure of the CNN-based 
spectrogram detector model. 

The CNN detector frst extracts an 80 × 201 two-dimensional 
time-frequency spectrogram of the one-second input signal (at 
8 kHz sample rate) by Short-Time Fourier Transform (STFT). The 
STFT window size is set to 20 ms, the hop length is set to 5 ms. 
We apply the logarithmic transformation to the two-dimensional 
time-frequency map generated by STFT. 

To provide sufcient resolution at low frequencies, and to reduce 
the computational overhead and improve the generalization ability 
of the model, we utilize a low-frequency enhanced triangular flter 
bank, which produces a 20 × 201 feature map. The center of the 
triangular flter equals to the STFT center at the frequency lower 
than 250 Hz, and at the frequency higher than 250 Hz, the flter 
center is equidistantly distributed according to Mel Frequency. 

The 20 × 201 feature map is the input to our CNN classifer. The 
frst layer of the CNN is a 1D convolution layer with 50 flters of size 
3. The convolutions are along the temporal dimension, creating a 
feature map of size 201 for each flter. The feature map is then passed 
through a second similar convolutional layer, and a 100-dimensional 
feature vector is obtained using global maximum pooling. The fnal 
layers are fully connected layers with size 20 and a softmax layer. We 
applied batch normalization [17] to the output of each convolution 
layer. The CNN model uses the Adam optimizer with β1 = 0.9 
and β2 = 0.999. The model is trained for 10 epochs with a batch 
size of 64 and constant learning rate of 0.001. The total number of 
parameters of the CNN model is 20K, which takes 40 KB of disk 
space. 

The CNN-based spectrogram detector requires 3 ms of calcula-
tion (352 fps) on a Huawei P30 device with HiSilicon Kirin 980 CPU, 
and the runtime memory footprint of the model is approximately 
68 KB. 
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Figure 6: Structure of CNN-based spectrogram detector. 

of the 119 sentences of 30 cm condition, we specifcally asked the 
participant to shout at the same volume as “say hello to friends 
20 meters away” for 20 of the sentences, chosen randomly. Each 
session lasted around 15 minutes, and participants were allowed to 
rest between the sessions. The experiment lasted about 70 minutes 
in total. Data set D1, collected using the above protocol, contains 
48552 Mandarin Chinese sentences, totaling 43.5 hours. The mean 
of recording duration for each command is 2.99 seconds (SD = 0.95 
s). 

For data set D2, we recorded background sounds in 49 diferent 
environments for model training. These environments include air-
planes (78 dB), subways (70 dB), on car (66 dB), canteens (58 dB), 
square (50 dB), ofce (45 dB), and so on. Each recording is more 
than 5 minutes. The total duration for all recordings is 15 hours. 

For data set D3, one of the researchers recorded audio continu-
ously in their everyday life with a Huawei Honor V20 smartphone. 
The recording application was running in the background and 
the user uses the smartphone and lives normally, such as eating, 
watching movies, chat with others, playing games, typing on the 
keyboard, taking the subway, going to the mall, riding a bicycle, 
etc.. This data set includes 161 hours of long-term recordings and 
doesn’t include any close-to-mic speech. In the data set, 10.3-hours 
noise is stronger than 60 dB, 21.7-hours noise is stronger than 50 dB. 
We use data set D3 to evaluate the False Accepts per Week per User 
(FAWU) of the two-stage algorithm in real life. 

5.4 Model Training 
Since the background noise and the user’s voice are usually addition-
ally superimposed, for model training, we superimposed samples 
from data sets D1 and D2 to acquire a larger data augmentation 
space. We randomly superimposed speech (D1) and environmental 
background sounds (D2) segments through a Poisson process with 
λ = 0.1. To augment training data set, we modulated the amplitude 
of each sound segment from the data sets by a random amplifcation 
factor of between 0.5–2.0 before superimposing. The episode was 
divided into one-second frames for model training. The frame is 

marked as a positive example if and only if it contained more than 
0.5 seconds of close-to-mic speech signal. 

We randomly selected 25% of the data as a verifcation set, and 
performed 4-fold cross validation. Data from any same user or 
same environment will not appear in both the training set and 
the verifcation set. We used the same protocol for the rest of this 
Evaluation section. 

5.5 Real-world Performance Testing 
In order to fully evaluate the contribution of each module of the 
algorithm, we split the algorithm into four parts: (1) Only use AATT 
without low-pass flter and CNN (AATT only), (2) AATT using 
low-pass fltering without CNN (Lowpass+AATT), (3) Only use 
CNN without AATT (CNN only), (4) Complete two-stage algorithm 
(Lowpass+AATT+CNN). We choose four scenarios: quiet ofce 
(45 dB), noisy canteen (58 dB), subway (70 dB) and daily recording 
(161 hours data set D3) to evaluate the performance of the two-stage 
algorithm in specifc scenarios and average conditions. For three 
specifc scenarios, we used Huawei P30 to record background noise 
for 15 minutes each. The SNR is around 37 dB, 24 dB, and 12 dB 
for the three scenes respectively. We perform the algorithm on the 
environmental background sound without any close-to-mic speech 
to calculate FAWU, and add close-to-mic speech (D1) with equal 
probability to test the average recall rate. It’s worth noting that 
we estimate FAWU by assuming all times of the week are in the 
corresponding scenario, but no one can be on the subway 24 hours. 
FAWU is just a performance indicator in this study. 

Results are shown in Table 1. We can fnd that the quieter the en-
vironment, the better the efect of AATT. At the same time, in quiet 
environment, low-pass flter can efectively reduce the false accepts 
of AATT. The CNN and AATT present complementary advantages 
and performs well in the 161 hours daily data set. For relative low 
recall rate of 78.6% in subway (70 dB), one main reason can be that 
the quiet speeches in the data set are highly overwhelmed by the 
environmental noise and hard to recognize. It is reasonable that 
the volume of voice should be increased appropriately to obtain a 
better signal-to-noise ratio in the noisy subway. 
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Table 1: Recall and FAWU of diferent settings. ’/’ means there is no false accepts during the whole episode. 

ofce (45dB) canteen (58dB) subway (70dB) daily (161 hours) 
Recall FAWU Recall FAWU Recall FAWU Recall FAWU 

AATT only 100% 1468.9 100% 9064.0 100% 28579.4 99.3% 2780.1 
Lowpass+AATT 100% / 100% 3296.0 99.5% 70362.1 99.4% 1880.4 

CNN only 98.6% 3930.5 96.2% 604.6 78.9% 241.8 94.7% 860.4 
Lowpass+AATT+CNN 98.6% / 96.2% / 78.6% / 94.1% 12.3 

6 STUDY 2: UNDERSTANDING PROXIMIC 
In order to understand the performance and boundaries of Prox-
iMic, we conducted four analysis: (1) white-box analysis of CNN, 
(2) device variation test, (3) automatic speech recognition (ASR) 
accuracy test with close-to-mic speech, (4) privacy of ProxiMic. 

6.1 Interpretability of the CNN 
In order to verify whether the CNN really captured the pop-noise 
and other subtle close-to-mic features which humans can distin-
guish clearly, we collected an outdoor recording and calculated the 
Saliency Map[40] and Occlusion Sensitivity Map[51]. As shown 
in Figure 7, the recording contains four Chinese words (sounds 
like ["tiæn"tSi:"tiæn"tSi:]) means "weather, weather". The frst two 
words are recorded at 30 cm (without pop-noise). The last two 
words are recorded at 2 cm (with pop-noise at 0.6s and 0.8s). 

Figure 7: Explainable analysis of CNN. (a) Original signal. (b) 
The input of CNN. (c) Saliency Map of CNN input. (d) Occlu-
sion Sensitivity Map of CNN input.

Sensitivity Map responds to the areas that CNN is most con-
cerned about. Figure 7 shows that the most sensitive part of CNN is 
the pop-noise part of the third and fourth words (2 cm). There are 
also some bright spots at the beginning of the second word and the 
frst word (30 cm), which means that if there is a pop-noise shape 
(similar to the beginning of the third word), the probability of acti-
vation will increase signifcantly, in other words, high-energy noise 
at other locations will not signifcantly increase the probability of 
activation. In other words, it is efective for only pop-noise and 
consonants to occur simultaneously. 

For the Occlusion Sensitivity Map, we use a 5 × 10 gray rectangle 
to cover a part of the spectrogram input and calculate the activation 

probability. We can fnd from Figure 7 that only when the pop-
noise part of the third word is covered, the activation probability is 
reduced to 45.8%. This is consistent with the intuition and training 
data that CNN captures pop-noise and activates only if there are 
close-to-mic features longer than around 0.5 seconds. 

6.2 Performance Analysis on Diferent Form 
Factors 

In Study 1, we evaluated 55 types of ECM and MEMS microphones 
of smartphone, and the result shows that ProxiMic is robust for 
smartphone. In order to clarify the impact of more types of hard-
ware packaging on ProxiMic and the generalization ability of CNN, 
we conducted this multi-device study. Unlike the smartphone mi-
crophone which has a wind tunnel with a diameter of about 1 mm, 
we found three other types of devices for evaluation. (1) TicWatch2 
smart watch, which has a microphone on the side and has a similar 
air duct structure. (2) B&O H6 wired headphone. Its microphone 
is on the headphone cable and is completely wrapped by a plastic 
shell. (3) Aigo R6625 recording pen, which has an ECM with a di-
ameter of about 7 mm at the top and is wrapped by a 5 mm thick 
windproof sponge. 

Table 2: Recall rate on diferent devices 

Devices phone watch headphone pen 

Recall 98.6% 98.9% 78.6% 85.1% 

We collected 119 close-to-mic speech (within 5 cm) from smart-
phones, smart watch, headphones and recorder pen in quiet envi-
ronment respectively. Table 2 shows the four recall rate of devices. 
The recall of the smartphone and the smartwatch is similar because 
of the same structure. The result of the watch indicates that for 
any wearable device in the future, as long as the microphone struc-
ture is the same as the smartphone, it can deploy ProxiMic directly. 
The headphone’s microphone and voice recorder pen fltered out 
around half of the pop noise. However, the vibration noise and 
slight airfow caused by wind impacting the plastic shell are still 
obvious in the sense of hearing. Although the structure and char-
acteristics are diferent, the model trained on the smartphone data 
sets also shows a strong generalization ability for headphones and 
voice recorder pens. We believe that collecting more data for special 
device structures can efectively solve the problem of low recall. 

6.3 ASR Accuracy 
Automatic Speech Recognition (ASR), also known as Speech To 
Text (STT), is a technology that can transform the one-dimensional 



CHI ’21, May 8–13, 2021, Yokohama, Japan Qin, et al. 

speech input into a series of word tokens, and it is an important 
task for realizing voice-based natural language understanding and 
human-computer interaction. In order to understand the impact 
of pop-noise on voice quality, testing the translation accuracy of 
ASR is an intuitive method. In this study, we used the Baidu Phrase 
Recognition Standard Edition interface [4] to perform ASR on a 
total of 48552 pieces of voice commands from study 1 (data set D1 
without background noise), and calculated the Word Error Rates 
(WER) on the ASR results (Table 3). 

Table 3: Word error rate of 48552 sentences 

Scenes 5cm loud 5cm soft 5cm whisper 30cm loud 

WER 2.10% 2.24% 7.83% 2.30% 

Baidu ASR is one of the well-known state-of-the-art ASR sys-
tems, which shows the leading level of ASR technology in Mandarin 
Chinese. We can see that the Word Error Rate (WER) of "within 5 cm 
soft", "within 5 cm loud" and "30 cm loud" are similar and excellent. 
This result shows that the strong pop-noise has little efect on the 
machine’s understanding of human speech. In addition, thanks to 
technological progress, within 5 cm whispering can also be accu-
rately translated by state-of-the-art ASR. The WER of within 5 cm 
whispering can meet the requirements of the scene of daily conver-
sation with the voice assistant. This allows us to use whispering 
with ProxiMic to protect privacy. 

6.4 Privacy Study 
The close-to-mic speech brings a high Signal-to-Noise Ratio (SNR), 
which allows the user to talk to the device at a much lower volume 
than normal. In this special interactive scenario, we try to under-
stand how much the user’s voice input would be eavesdropped. 
We recruited 6 participants from the campus, ask them to talk to 
ProxiMic on smartphone in quiet ofces (~40 dB), cafes (~50 dB), 
and canteens (~60 dB) respectively. We let everyone input voice 
commands from study 1 (data set D1) to smartphone in a comfort-
able small voice, and try to avoid being heard by others. When 
one person speaks, others sit on chairs at diferent distances, eaves-
drop carefully and write down what they hear. We use the iFlytek 
ASR system, one of the well-known state-of-the-art ASR systems 
for Mandarin Chinese, which is also integrated into the ProxiMic 
Android application, to convert user’s speech into text. When the 
speaker’s words are not completely understood by smartphone, 
the speaker is asked to speak again until the ASR is completely 
accurate. So the WER of ASR is 0% for each sentence. Each user 
speaks 50 diferent sentences in each scene, and the result is shown 
in Figure 8 and Figure 9. 

Because ProxiMic supports whispering, almost all voice com-
mands are made in whispering way. This makes all sentences almost 
impossible to understand at 1 meter, and familiar words are only 
vague guesses. The users said that close-to-mic whispering is com-
pletely acceptable in a slightly noisy environment or when the 
words spoken are not so private. 

While the user is speaking, we additionally set up a UMIK-1 
measuring microphone 50 cm in front of the speaker and recorded 
the whole process. After the experiment, we played back what the 

Figure 8: Word Error Rate (WER) of eavesdroppers in difer-
ent distances and scenes. 

Figure 9: Sentence Error Rate (SER) of eavesdroppers in dif-
ferent distances and scenes. 

user said, and we couldn’t hear any user’s whispering voice from 
the microphone recording. This shows that ProxiMic also has a 
good defense efect against ordinary microphone eavesdropping. 

7 STUDY 3: USABILITY STUDY OF PROXIMIC 
In this study, we compare ProxiMic to other activation methods to 
evaluate its efciency and usability. We choose three widely-used 
activation methods of wake-up phrase (Keywords), virtual key press 
(GUI) and physical key press (Button) for comparison. We recorded 
Activation Time for each task, and asked the participants to provide 
subjective ratings for each task. 

7.1 Activation Methods 
We compared the following four activation methods for voice input, 
which are the main methods to activate voice input on various 
devices. 

• ProxiMic: The participant brings the device to the mouth to 
activate voice input. The algorithm on the devices recognize 
the close-to-mic speech locally. 

• Keywords: The participant speaks "XiaoYi-XiaoYi" to trig-
ger the activation. The wake-up phrase is detected by the 
built-in keyword spotting algorithm of the device. 
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• GUI: The participant fnds the voice assistant application and 
presses the virtual key on the touchscreen as the activation. 

• Button: The participant presses the physical button on the 
side of the device for one second as the activation. 

7.2 Participants 
We recruited 6 participants (2 female and 4 male; mean age = 43.3, 
SD = 16.48) in this experiment. Five of them had prior experience 
of voice input on smartphones. 

7.3 Apparatus 
We developed a voice assistant applications on smartphone to apply 
ProxiMic. We used the following devices for this study: a Huawei 
P30 with a power button located on the right, and a main micro-
phone on the bottom; a Mobvoi TicWatch 2 with a microphone on 
the side pointing to the palm and a button next to the microphone 
to trigger the built-in voice assistant; a B&O H6 headphone (con-
nected to the Huawei P30) with one microphone on the headphone 
cable, which can be easily re-positioned by hand to within 5 cm in 
front of the mouth. When connected to the headphone, the smart 
phone switches to use voice input from the headphone. 

7.4 Design 
We conducted a within-subject study with two independent factors 
as Activation Method and Device Type. We tested four activation 
methods on the smartphone to compare the performance of Prox-
iMic with the widely-used baselines. In addition, we evaluated 
ProxiMic on two more devices to test the infuence of device difer-
ence. Using one activation method on one device, the participant 
completed 15 rounds of voice input tasks as one session. The order 
of Activation Method and Device Type were randomized for each 
participant. In total, each participant performed 6 sessions × 15 
tasks = 90 sentences input tasks. 

We chose the widely-used voice commands as the voice input 
task in each session. We counted the time duration between when 
the test started and when the frst word of the sentence was spoken 
by the participant as the efciency metric. We asked participants to 
fll in the NASA-TLX [15] questionnaire and answer 6 supplemen-
tary questions in seven-point Likert scale as the metrics to evaluate 
user experience. 

7.5 Procedure 
The experimenter frst introduced the voice input task and acti-
vation methods to the participants. Two minutes was given to 
participants to practice and familiarize themselves with the task 
and activation methods. Then, participants completed 6 sessions 
of voice input. They were asked to perform the inputs as fast as 
possible. For each task, we asked the participants to hold the micro-
phone to around 2 cm from their mouth, and rest the arm on a desk 
after fnishing each task. Participants were asked to repeat a task if 
the voice input was not successful. We only record the time of each 
successful operation. After a session, each participant was allowed 
a 2-minute break. Finally, we asked participants to completed a 
NASA-TLX questionnaire with 6 supplementary questions. The 
experiment lasted around 30 minutes for each participant. 

7.6 Results 
We ran RM-ANOVA on the activation time with post-hoc T-tests, 
Friedman tests on subjective scores with post-hoc Wilcoxon signed 
rank tests. 

7.6.1 Activation Eficiency. RM-ANOVA results showed signifcant 
efects of both Activation Method (F3,15 = 25.633, p < .001) and 
Device Type (F2,10 = 7.339, p = .01) on Activation Time. Post-hoc 
tests showed that ProxiMic (mean=1.14, SD=.08) was signifcantly 
faster than all other methods, outperforming Keywords by 51.7% 
(p<.05), GUI by 61.5% (p<.01), Button by 42.4% (p<.001) (Table 4). For 
Device Types, post-hoc tests found signifcant diference between 
smart watch and smart phone (p<.05), with the former 29.8% faster 
(Table 5). 

Table 4: Activation Time (second) for diferent Methods 

Keywords GUI Button ProxiMic 

mean 2.36 2.96 1.98 1.14 
SD 0.26 0.21 0.10 0.08 

Table 5: Activation Time (second) for diferent Device Types 

Phone Watch Headphone 

mean 1.14 0.80 1.09 
SD 0.08 0.04 0.08 

7.6.2 User Experience. The overall results are shown in Figure 
10. Friedman tests show that Activation Method makes a signif-
icant infuence on all index (p < .05). Post-hoc tests show that 
ProxiMic provides signifcantly lower efort, easier to use, more 
privacy activation than Keywords; lower mental demand, lower 
temporal demand, more overall performance,lower efort, easier 
to use, broader applications and more want to use activation than 
GUI; broader applications activation than Button (p < .05 in all 
cases). ProxiMic also provides signifcantly lower frustration, easier 
to continuous input then other three methods (p < .05). 

In the experiment, three participants (P2, P5, P6) reported that 
"Wake-up phrase(s) were difcult to recognize", P5 reported that 
"Touching the ear and pulling the headphone line is very easy, 
fast and comfortable". These comments are consistent with users’ 
subjective feedback that ProxiMic is efcient, user-friendly and 
practical. 

8 DISCUSSION 
We discuss opportunities and application scenarios of ProxiMic, as 
well as limitations and future work. 

8.1 Interaction Enabled by Whisper Detection 
Since ProxiMic supports whispering — a tone that is only percepti-
ble when speaking within close proximity to the microphone — we 
attempted to further distinguish whispering and normal speaking, 
and design separate interactive feedback. Whispering may suggest 
that a user is in a situation where speaking loudly is inappropriate, 
or that the voice data are privacy-sensitive. Therefore, voice-based 

https://mean=1.14
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Figure 10: User’s subjective feedback on the four ways. The score range is from 1 to 7, and 7 represents the most positive 
evaluation. The standard deviation is marked in the fgure. 

systems can change how they provide feedback when a whisper is 
detected, e.g., responding in text or vibration only. We employed 
the ProxiMic CNN structure to distinguish between sound from the 
within 5 cm whisper and the within 5 cm soft/loud data sets from 
study 1. After retraining on the two data sets, the ProxiMic CNN 
achieved a classifcation accuracy of 95.7% without modifying the 
model design. This demonstrates that the structure of our CNN 
is extensible and can be easily extended to more categories. This 
shows that it is promising and feasible to realize tone-context wake-
up for ProxiMic. The user study of tone-context-based feedback in 
the close-to-mic scenario can be used as one of the directions for 
future work. 

8.2 Language dependence and Robustness of 
ProxiMic 

We mainly utilize pop noise to recognize close-to-mic speech. Pop 
noise is a common feature in the words in diferent languages. 
We take English words as an example. Most words containing 
"b,c,d,f,j,k,l,p,q,r,s,t,v,w,x,y,z" generate clear "pop noise" airfow. We 
invited 4 additional users to read random English sentences from 
"the MacKenzie phrase set" [24] (50 sentences per user in quiet 
scenario). 96% of sentences are recognized as close-to-mic speech 
by ProxiMic (with Chinese training corpus). However, the exact 
proportion of the words that can trigger Proximic is diferent in 
diferent languages, and can be used as future work. In addition, the 
feature of pop noise can prevent voice attacks to a certain extent (as 
discussed in Shiota et al.’s work[36, 37]). To show our model can be 
applied to deter direct replay attacks, we tested ProxiMic’s ability in 
identifying replayed voice recordings with strong pop-noise from 
a speaker. Results show that 99.92% of the replayed frames were re-
jected by our CNN because the vibration caused by the speaker and 
the resulting impact of the airfow are vastly diferent. The two-step 
algorithm using sound amplitude and spectrogram characteristics 
shows a certain degree of attack prevention performance. This can 
be an interesting direction for future work. 

8.3 Potential Applications of ProxiMic 
We believe that the ability of recognizing close-to-mic speech has 
broad application potential. In recent years, with the development 
of Internet of Things and ubiquitous computing, we can see the 

improvement of sensing capabilities of various devices. PenSight 
[25] demonstrates the great potential of gesture interaction for 
digital tablet pen. If we add an additional microphone to the top 
of the pen, we can potentially enhance gesture input with the rich 
semantics of voice input. Ubiquitous computing also extends the 
boundaries of smart terminals such as smartphone and smart TV. 
Consider a button with an embedded microphone pinned on the 
neckline: a user can simply lower their head to speaker into the 
device, which can as an input of other smart devices. In addition, 
ProxiMic can turn most of the existing handheld and wearable voice 
input devices into personal voice input devices: by recognizing 
close-to-mic speech, we have the opportunity of separating the 
voice of the device holder (with pop noise) from the voice of others 
(without pop noise). 

8.4 Subtle Close-to-Mic Features 
Our two-step algorithm is designed according to the characteris-
tics of pop noise, and we found that CNN indeed responds to the 
frequency spectrogram of pop noise most of the time. But for some 
words without obvious pop noise, ProxiMic can still partly distin-
guish whether it is close-to-mic speach. Although the CNN is hard 
to be explained, we think that the reason can be other subtle close-
to-mic features which we didn’t use explicitly. We decided to list the 
noteworthy subtle close-to-mic features which can be noticed by 
the human ear in the experiment here. (1) With close-to-mic speech, 
the sound of air rubbing against the mouth is faintly audible. This 
sound is similar to the high-frequency part of whispering which 
will be signifcantly reduced as the distance becomes longer. (2) 
When indoors, due to the presence of wall refections, farther-away 
sounds (over 30 cm) will be superimposed with muddy reverbera-
tion (often perceived as a sense of space). This direct-to-reverberant 
ratio may be used as a potential feature to distinguish close-to-mic 
speech in indoor environments. (3) The diference in volume be-
tween far and near is more signifcant for outdoor environments 
because there is no indoor refection. (4) In addition, the timbre and 
volume of speech also have a certain correlation, which means that 
if a person speaks in a low voice, but has a huge volume received 
by microphone, it should be considered as a potential close-to-mic 
speech. We expect that in addition to CNN’s automatic feature 
extraction, these subtle features can be efectively used in future 
algorithms. 
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8.5 Limitation and Future Work 
In addition to the future work mentioned above, there are some 
limitations of ProxiMic which can be improved in future work. 

First, we use smartphone microphones (ECM or MEMS) for train-
ing and testing. Although the multi-device performance is accept-
able, we think that more data and testing in more package types 
are necessary for real-world applications. 

Second, although result shows that the privacy of ProxiMic is 
acceptable, a general ASR system was used in our privacy study. In 
the future, we can try to train a domain specifc ASR system used 
to recognizing within 5 cm whispering which can efectively utilize 
pop-noise and exhaled airfow. Analogous to Fukumoto’s ingressive-
speech based SilentVoice [10], we can try to use ProxiMic to provide 
ultra-small volume voice input for smartphones and smartwatches. 

Third, the pop-noise-based detector relies on the user talking 
direct into the microphone and the device can efectively capture 
pop noise (e.g., no mechanical pop flter). In this case, using more 
features or hardware to designing a close-to-mic detector which 
does not completely rely on pop noise is a future work. 

Finally, semantic-based of-device False Trigger Mitigation (FTM) 
systems can be used to further reduce the FAWU. In the future, we 
can try to integrate the FTM system into ProxiMic to understand 
how much false alarms from ProxiMic can be solved by FTM system. 

9 CONCLUSION 
ProxiMic is a novel sensing technique that uses pop noise and close-
to-mic features to activate voice input by a single microphone. The 
evaluation results show that ProxiMic has reached 94.1% activate 
recall, 12.3 FAWU with 68 KB memory size, which can run at 352 fps 
on smartphone. ProxiMic can be used in a variety of devices such 
as mobile phones, watches, headphones, etc. Experiments show 
that ProxiMic is robust to the environment and devices, and will 
not afect the performance of subsequent algorithms such as ASR. 
Users agree that ProxiMic is efcient, user-friendly and practical. 
With the continuous popularity of voice input devices, we expect 
that ProxiMic can potentially be applied in a wide variety of use 
cases. 

ACKNOWLEDGMENTS 
This work is supported by National Key Research and Development 
Plan under Grant No. 2016YFB1001200 and No. 2019AAA0105200, 
the Natural Science Foundation of China under Grant No. 61672314, 
and also by Beijing Key Lab of Networked Multimedia, the Insti-
tute for Guo Qiang of Tsinghua University, Institute for Artifcial 
Intelligence of Tsinghua University (THUAI), and Beijing Academy 
of Artifcial Intelligence (BAAI). 

REFERENCES 
[1] Apple. 2020. Use Siri on all your Apple devices - Apple Support. Website. 

https://support.apple.com/en-us/HT204389#apple-watch. 
[2] Sylvain Argentieri, Patrick Danes, and Philippe Souères. 2015. A survey on 

sound source localization in robotics: From binaural to array processing methods. 
Computer Speech & Language 34, 1 (2015), 87–112. 

[3] S Argentieri, A Portello, M Bernard, P Danes, and B Gas. 2013. Binaural systems in 
robotics. In The technology of binaural listening. Springer-Verlag, Berlin, Germany, 
225–253. 

[4] Baidu. 2020. Baidu ASR. http://ai.baidu.com/tech/speech/asr. 
[5] Jonathan S Brumberg, Alfonso Nieto-Castanon, Philip R Kennedy, and Frank H 

Guenther. 2010. Brain–computer interfaces for speech communication. Speech 

communication 52, 4 (2010), 367–379. 
[6] Joe C Chen, Kung Yao, and Ralph E Hudson. 2002. Source localization and 

beamforming. IEEE Signal Processing Magazine 19, 2 (2002), 30–39. 
[7] Yunbin Deng, James T. Heaton, and Geofrey S. Meltzner. 2014. Towards a 

practical silent speech recognition system. In INTERSPEECH 2014, 15th Annual 
Conference of the International Speech Communication Association, Singapore, 
September 14-18, 2014, Haizhou Li, Helen M. Meng, Bin Ma, Engsiong Chng, and 
Lei Xie (Eds.). ISCA, Baixas, France, 1164–1168. http://www.isca-speech.org/ 
archive/interspeech_2014/i14_1164.html 

[8] Aarthi Easwara Moorthy and Kim-Phuong L Vu. 2015. Privacy concerns for use 
of voice activated personal assistant in the public space. International Journal of 
Human-Computer Interaction 31, 4 (2015), 307–335. 

[9] Pasquale Foggia, Nicolai Petkov, Alessia Saggese, Nicola Strisciuglio, and Mario 
Vento. 2015. Reliable detection of audio events in highly noisy environments. 
Pattern Recognition Letters 65 (2015), 22–28. 

[10] Masaaki Fukumoto. 2018. SilentVoice: Unnoticeable Voice Input by Ingressive 
Speech. In Proceedings of the 31st Annual ACM Symposium on User Interface 
Software and Technology (Berlin, Germany) (UIST ’18). ACM, New York, NY, USA, 
237–246. https://doi.org/10.1145/3242587.3242603 

[11] Yang Gao, Yincheng Jin, Jiyang Li, Seokmin Choi, and Zhanpeng Jin. 2020. 
EchoWhisper: Exploring an Acoustic-based Silent Speech Interface for Smart-
phone Users. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies 4, 3 (2020), 1–27. 

[12] Fengpei Ge and Yonghong Yan. 2017. Deep neural network based wake-up-
word speech recognition with two-stage detection. In 2017 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Piscataway, 
NJ, USA, 2761–2765. https://doi.org/10.1109/ICASSP.2017.7952659 

[13] Eleftheria Georganti, Tobias May, Steven van de Par, Aki Harma, and John Mour-
jopoulos. 2011. Speaker distance detection using a single microphone. IEEE 
transactions on audio, speech, and language processing 19, 7 (2011), 1949–1961. 

[14] Eleftheria Georganti, Tobias May, Steven Van De Par, and John Mourjopoulos. 
2013. Sound source distance estimation in rooms based on statistical properties 
of binaural signals. IEEE transactions on audio, speech, and language processing 
21, 8 (2013), 1727–1741. 

[15] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task 
Load Index) : Results of Empirical and Theoretical Research. Advances in Psy-
chology 52, 6 (1988), 139–183. 

[16] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren 
Jansen, R. Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan 
Seybold, Malcolm Slaney, Ron J. Weiss, and Kevin W. Wilson. 2017. CNN 
architectures for large-scale audio classifcation. In 2017 IEEE International 
Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New Or-
leans, LA, USA, March 5-9, 2017. IEEE, Piscataway, NJ, USA, 131–135. https: 
//doi.org/10.1109/ICASSP.2017.7952132 

[17] Sergey Iofe and Christian Szegedy. 2015. Batch Normalization: Accelerating 
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of 
the 32nd International Conference on Machine Learning (Proceedings of Machine 
Learning Research, Vol. 37), Francis Bach and David Blei (Eds.). PMLR, Lille, France, 
448–456. http://proceedings.mlr.press/v37/iofe15.html 

[18] Arnav Kapur, Shreyas Kapur, and Pattie Maes. 2018. AlterEgo: A Personalized 
Wearable Silent Speech Interface. In 23rd International Conference on Intelligent 
User Interfaces (Tokyo, Japan) (IUI ’18). ACM, New York, NY, USA, 43–53. https: 
//doi.org/10.1145/3172944.3172977 

[19] Naoki Kimura, Michinari Kono, and Jun Rekimoto. 2019. SottoVoce: An Ultra-
sound Imaging-Based Silent Speech Interaction Using Deep Neural Networks. 
In Proceedings of the 2019 CHI Conference on Human Factors in Computing 
Systems (Glasgow, Scotland Uk) (CHI ’19). ACM, New York, NY, USA, 1–11. 
https://doi.org/10.1145/3290605.3300376 

[20] BRET KINSELLA. 2018. New Report: Over 1 Billion Devices Provide Voice 
Assistant Access Today and Highest Usage is on Smartphones. Website. 

[21] Charles Knapp and Gliford Carter. 1976. The generalized correlation method 
for estimation of time delay. IEEE transactions on acoustics, speech, and signal 
processing 24, 4 (1976), 320–327. 

[22] Kenichi Kumatani, Sankaran Panchapagesan, Minhua Wu, Minjae Kim, Nikko 
Strom, Gautam Tiwari, and Arindam Mandai. 2017. Direct modeling of raw audio 
with DNNs for wake word detection. In 2017 IEEE Automatic Speech Recognition 
and Understanding Workshop (ASRU). IEEE, Piscataway, NJ, USA, 252–257. 

[23] Gustavo López, Luis Quesada, and Luis A Guerrero. 2017. Alexa vs. Siri vs. Cortana 
vs. Google Assistant: a comparison of speech-based natural user interfaces. In 
International Conference on Applied Human Factors and Ergonomics. Springer-
Verlag, Cham, Switzerland, 241–250. 

[24] I. Scott MacKenzie and R. William Soukoref. 2003. Phrase Sets for Evaluating Text 
Entry Techniques. In CHI ’03 Extended Abstracts on Human Factors in Computing 
Systems (Ft. Lauderdale, Florida, USA) (CHI EA ’03). ACM, New York, NY, USA, 
754–755. https://doi.org/10.1145/765891.765971 

[25] Fabrice Matulic, Riku Arakawa, Brian Vogel, and Daniel Vogel. 2020. PenSight: 
Enhanced Interaction with a Pen-Top Camera. In Proceedings of the 2020 CHI 

https://support.apple.com/en-us/HT204389#apple-watch
http://ai.baidu.com/tech/speech/asr
http://www.isca-speech.org/archive/interspeech_2014/i14_1164.html
http://www.isca-speech.org/archive/interspeech_2014/i14_1164.html
https://doi.org/10.1145/3242587.3242603
https://doi.org/10.1109/ICASSP.2017.7952659
https://doi.org/10.1109/ICASSP.2017.7952132
https://doi.org/10.1109/ICASSP.2017.7952132
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1145/3172944.3172977
https://doi.org/10.1145/3172944.3172977
https://doi.org/10.1145/3290605.3300376
https://doi.org/10.1145/765891.765971


CHI ’21, May 8–13, 2021, Yokohama, Japan 

Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI 
’20). ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376147 

[26] Donald McMillan, Barry Brown, Ikkaku Kawaguchi, Razan Jaber, Jordi Solsona Be-
lenguer, and Hideaki Kuzuoka. 2019. Designing with Gaze: Tama–a Gaze Acti-
vated Smart-Speaker. Proceedings of the ACM on Human-Computer Interaction 3, 
CSCW (2019), 1–26. 

[27] Raveesh Meena, José Lopes, Gabriel Skantze, and Joakim Gustafson. 2015. Au-
tomatic Detection of Miscommunication in Spoken Dialogue Systems. In Pro-
ceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and 
Dialogue. Association for Computational Linguistics, Prague, Czech Republic, 
354–363. https://doi.org/10.18653/v1/W15-4647 

[28] Annamaria Mesaros, Toni Heittola, Antti Eronen, and Tuomas Virtanen. 2010. 
Acoustic event detection in real life recordings. In 2010 18th European Signal 
Processing Conference. IEEE, Piscataway, NJ, USA, 1267–1271. 

[29] Beomjun Min, Jongin Kim, Hyeong-Jun Park, and Boreom Lee. 2016. Vowel 
Imagery Decoding toward Silent Speech BCI Using Extreme Learning Machine 
with Electroencephalogram. BioMed Research International 2016 (01 2016), 1–11. 
https://doi.org/10.1155/2016/2618265 

[30] Martin Porcheron, Joel E. Fischer, Stuart Reeves, and Sarah Sharples. 2018. Voice 
Interfaces in Everyday Life. In Proceedings of the 2018 CHI Conference on Human 
Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM, New York, 
NY, USA, 1–12. https://doi.org/10.1145/3173574.3174214 

[31] François Portet, Michel Vacher, Caroline Golanski, Camille Roux, and Brigitte 
Meillon. 2013. Design and evaluation of a smart home voice interface for the 
elderly: acceptability and objection aspects. Personal and Ubiquitous Computing 
17, 1 (2013), 127–144. https://doi.org/10.1007/s00779-011-0470-5 

[32] Javier Ramırez, José C Segura, Carmen Benıtez, Angel De La Torre, and Antonio 
Rubio. 2004. Efcient voice activity detection algorithms using long-term speech 
information. Speech communication 42, 3-4 (2004), 271–287. 

[33] Florian Roider, Lars Reisig, and Tom Gross. 2018. Just Look: The Benefts of Gaze-
Activated Voice Input in the Car. In Adjunct Proceedings of the 10th International 
Conference on Automotive User Interfaces and Interactive Vehicular Applications 
(Toronto, ON, Canada) (AutomotiveUI ’18). ACM, New York, NY, USA, 210–214. 
https://doi.org/10.1145/3239092.3265968 

[34] Richard Roy and Thomas Kailath. 1989. ESPRIT-estimation of signal parameters 
via rotational invariance techniques. IEEE Transactions on acoustics, speech, and 
signal processing 37, 7 (1989), 984–995. 

[35] R. Schmidt. 1986. Multiple emitter location and signal parameter estimation. 
IEEE Transactions on Antennas and Propagation 34, 3 (1986), 276–280. 

[36] Sayaka Shiota, Fernando Villavicencio, Junichi Yamagishi, Nobutaka Ono, Isao 
Echizen, and Tomoko Matsui. 2015. Voice liveness detection algorithms based 
on pop noise caused by human breath for automatic speaker verifcation. In 
INTERSPEECH 2015, 16th Annual Conference of the International Speech Communi-
cation Association, Dresden, Germany, September 6-10, 2015. ISCA, Baixas, France, 
239–243. http://www.isca-speech.org/archive/interspeech_2015/i15_0239.html 

[37] Sayaka Shiota, Fernando Villavicencio, Junichi Yamagishi, Nobutaka Ono, Isao 
Echizen, and Tomoko Matsui. 2016. Voice Liveness Detection for Speaker Verif-
cation based on a Tandem Single/Double-channel Pop Noise Detector. In Odyssey 
2016: The Speaker and Language Recognition Workshop, Bilbao, Spain, June 21-24, 
2016, Luis Javier Rodríguez-Fuentes and Eduardo Lleida (Eds.). ISCA, Baixas, 
France, 259–263. https://doi.org/10.21437/Odyssey.2016-37 

[38] ShotSpotter. 2020. ShotSpotter. https://www.shotspotter.com/. 
[39] Siddharth Sigtia, Rob Haynes, Hywel Richards, Erik Marchi, and John Bridle. 2018. 

Efcient Voice Trigger Detection for Low Resource Hardware. In Interspeech 2018, 
19th Annual Conference of the International Speech Communication Association, 

Qin, et al. 

Hyderabad, India, 2-6 September 2018, B. Yegnanarayana (Ed.). ISCA, Baixas, 
France, 2092–2096. https://doi.org/10.21437/Interspeech.2018-2204 

[40] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep Inside 
Convolutional Networks: Visualising Image Classifcation Models and Saliency 
Maps. In 2nd International Conference on Learning Representations, Workshop Track 
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). ICLR 2014, Banf, Canada, 
1–8. http://arxiv.org/abs/1312.6034 

[41] Jongseo Sohn, Nam Soo Kim, and Wonyong Sung. 1999. A statistical model-based 
voice activity detection. IEEE signal processing letters 6, 1 (1999), 1–3. 

[42] Ke Sun, Chun Yu, Weinan Shi, Lan Liu, and Yuanchun Shi. 2018. Lip-interact: 
Improving mobile device interaction with silent speech commands. In Proceedings 
of the 31st Annual ACM Symposium on User Interface Software and Technology. 
ACM, New York, NY, USA, 581–593. 

[43] S Gökhun Tanyer and Hamza Ozer. 2000. Voice activity detection in nonstationary 
noise. IEEE Transactions on speech and audio processing 8, 4 (2000), 478–482. 

[44] Jean-Marc Valin, François Michaud, and Jean Rouat. 2007. Robust localization 
and tracking of simultaneous moving sound sources using beamforming and 
particle fltering. Robotics and Autonomous Systems 55, 3 (2007), 216–228. 

[45] Barry D Van Veen and Kevin M Buckley. 1988. Beamforming: A versatile approach 
to spatial fltering. IEEE assp magazine 5, 2 (1988), 4–24. 

[46] Yueting Weng, Chun Yu, Yingtian Shi, Yuhang Zhao, Yukang Yang, and Yuanchun 
Shi. 2021. FaceSight: Enabling Hand-to-Face Gesture Interaction on AR Glasses
with a Downward-Facing Camera Vision. In Proceedings of the 2021 CHI Con-
ference on Human Factors in Computing Systems (Tokohama, Japan) (CHI ’21). 
Association for Computing Machinery, New York, NY, USA, 1–13. https: 
//doi.org/10.1145/3411764.3445484 

[47] Yukang Yan, Chun Yu, Yingtian Shi, and Minxing Xie. 2019. PrivateTalk: Activat-
ing Voice Input with Hand-On-Mouth Gesture Detected by Bluetooth Earphones. 
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software 
and Technology (New Orleans, LA, USA) (UIST ’19). ACM, New York, NY, USA, 
1013–1020. https://doi.org/10.1145/3332165.3347950 

[48] Yukang Yan, Chun Yu, Wengrui Zheng, Ruining Tang, Xuhai Xu, and Yuanchun 
Shi. 2020. FrownOnError: Interrupting Responses from Smart Speakers by Facial 
Expressions. In Proceedings of the 2020 CHI Conference on Human Factors in 
Computing Systems (Honolulu, HI, USA) (CHI ’20). ACM, New York, NY, USA, 
1–14. https://doi.org/10.1145/3313831.3376810 

[49] Zhican Yang, Chun Yu, Fengshi Zheng, and Yuanchun Shi. 2019. ProxiTalk: 
Activate Speech Input by Bringing Smartphone to the Mouth. Proceedings of 
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 3 (2019), 
1–25. 

[50] Andreas Zehetner, Martin Hagmüller, and Franz Pernkopf. 2014. Wake-up-word 
spotting for mobile systems. In 2014 22nd European Signal Processing Conference 
(EUSIPCO). IEEE, Piscataway, NJ, USA, 1472–1476. 

[51] Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and Understanding 
Convolutional Networks. In Computer Vision - ECCV 2014 - 13th European 
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I (Lec-
ture Notes in Computer Science, Vol. 8689), David J. Fleet, Tomás Pajdla, Bernt 
Schiele, and Tinne Tuytelaars (Eds.). Springer-Verlag, Cham, Switzerland, 818– 
833. https://doi.org/10.1007/978-3-319-10590-1_53 

[52] Shiwen Zhao, Brandt Westing, Shawn Scully, Heri Nieto, Roman Holenstein, 
Minwoo Jeong, Krishna Sridhar, Brandon Newendorp, Mike Bastian, Sethu Ra-
man, Tim Paek, Kevin Lynch, and Carlos Guestrin. 2019. Raise to Speak: An 
Accurate, Low-Power Detector for Activating Voice Assistants on Smartwatches. 
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge 
Discovery & Data Mining (Anchorage, AK, USA) (KDD ’19). ACM, New York, NY, 
USA, 2736–2744. https://doi.org/10.1145/3292500.3330761 

https://doi.org/10.1145/3313831.3376147
https://doi.org/10.18653/v1/W15-4647
https://doi.org/10.1155/2016/2618265
https://doi.org/10.1145/3173574.3174214
https://doi.org/10.1007/s00779-011-0470-5
https://doi.org/10.1145/3239092.3265968
http://www.isca-speech.org/archive/interspeech_2015/i15_0239.html
https://doi.org/10.21437/Odyssey.2016-37
https://www.shotspotter.com/
https://doi.org/10.21437/Interspeech.2018-2204
http://arxiv.org/abs/1312.6034
https://doi.org/10.1145/3411764.3445484
https://doi.org/10.1145/3411764.3445484
https://doi.org/10.1145/3332165.3347950
https://doi.org/10.1145/3313831.3376810
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1145/3292500.3330761

	Abstract
	1 Introduction
	2 Related Work
	2.1 Activating Voice Input
	2.2 Privacy and Security of Voice Input
	2.3 Close-to-Mic Speech Detection

	3 Signal Analysis of Close-to-Mic Speech
	3.1 Collecting Audio Samples
	3.2 Sound Amplitude Characteristics
	3.3 Spectrogram Characteristics
	3.4 Design Implication

	4 the proximic detector
	4.1 Adaptive Amplitude Threshold Trigger
	4.2 CNN-Based Spectrogram Detector

	5 Study 1: Algorithm Evaluation
	5.1 Participants
	5.2 Apparatus
	5.3 Design and Procedure
	5.4 Model Training
	5.5 Real-world Performance Testing

	6 Study 2: Understanding ProxiMic
	6.1 Interpretability of the CNN
	6.2 Performance Analysis on Different Form Factors
	6.3 ASR Accuracy
	6.4 Privacy Study

	7 Study 3: Usability Study of ProxiMic
	7.1 Activation Methods
	7.2 Participants
	7.3 Apparatus
	7.4 Design
	7.5 Procedure
	7.6 Results

	8 Discussion
	8.1 Interaction Enabled by Whisper Detection
	8.2 Language dependence and Robustness of ProxiMic
	8.3 Potential Applications of ProxiMic
	8.4 Subtle Close-to-Mic Features
	8.5 Limitation and Future Work

	9 Conclusion
	Acknowledgments
	References



