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ABSTRACT

We present 1D Handwriting, a unistroke gesture technique
enabling text entry on a one-dimensional interface. The
challenge is to map two-dimensional handwriting to a
reduced one-dimensional space, while achieving a balance
between memorability and performance efficiency. After an
iterative design, we finally derive a set of ambiguous two-
length unistroke gestures, each mapping to 1-4 letters. To
input words, we design a Bayesian algorithm that takes into
account the probability of gestures and the language model.
To input letters, we design a pause gesture allowing users to
switch into letter selection mode seamlessly. Users studies
show that 1D Handwriting significantly outperforms a
selection-based technique (a variation of 1Line Keyboard)
for both letter input (4.67 WPM vs. 420 WPM) and word
input (9.72 WPM vs. 8.10 WPM). With extensive training,
text entry rate can reach 19.6 WPM. Users’ subjective
feedback indicates 1D Handwriting is easy to learn and

efficient to use. Moreover, it has several potential
applications for other one-dimensional constrained
interfaces.
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INTRODUCTION

Nowadays, many new smart personal devices are emerging.
Such devices typically have a constrained input interface
due to the limited size of the form factor. Consequently,
text entry is difficult on these devices, which prohibits their
broader use. In this paper, we focus on one-dimensional text
entry for devices that have only one-dimensional input
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signals, or the input capacity on one dimension is much
greater than that on the other. Examples include the
touchable spectacle frame of a smart glass (e.g. Google
Glass), the edge of a side screen of a smart phone (e.g.
GALAXY Note Edge), and a smart wristband.

Researchers have proposed various techniques to enable
text entry on constrained interfaces (e.g. a keypad, a
joystick, a tracking ball, and air interaction etc.). These
techniques include coding letters [16], unistroke gestures
[2], ambiguous keyboards [18], and gesture keyboards [12,
31]. However, most of these techniques are for two-
dimensional constrained interfaces or interfaces with a
limited number of buttons or gestures.

In this paper, we present 1D Handwriting, which enables
users to perform unistroke gestures on a one-dimensional
interface to input text. We research, implement and evaluate
1D Handwriting with Google Glass, a representative one-
dimensional input device. The biggest challenge
encountered is that many letters look similar, if not
identical, after projected into a reduced one-dimensional
space. Therefore, our goal is to derive a set of one-
dimensional gestures that strikes a balance between
memorability, input accuracy and input speed.

After a careful and iterative design, our result is a set of
ambiguous unistroke handwriting gestures based on sub-
stroke of two-level lengths. To complete the input, we
design a one-dimensional gesture recognition algorithm that
classifies input strokes in a probabilistic way. For letter
input, we design a smooth transition gesture allowing the
user to first gesture a stroke (representing a group of letters)
and then select the target letter (within the group) without
lifting his/her finger. For word input, we use a Bayesian
approach that takes both the probability of gesture and the
language model into account to interpret users’ input.

To evaluate the performance of 1D Handwriting, we
conduct three lab experiments. Results show that 1D
Handwriting provides immediate usability: With limited
training, users can achieve 4.67 WPM for letter level input
(error rate = 0.78%) and 9.72 WPM for word level input
(error rate = 0.25%). These speeds are comparable to those
proposed for two-dimensional constrained interfaces, and
significantly outperforms the one-dimensional selection-
based technique (the Baseline in our experiments) by 11.4%
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for letter input and 20.0% for word input. With extensive
training focused on a single phrase (6 words, 14 distinct
letters, 7 distinct gestures), text entry rate can reach 19.6
WPM after the tenth input. Users’ subjective feedbacks
indicate that 1D Handwriting is fun to use and its stroke
gestures are easy to remember. In the future, we plan to
apply 1D Handwriting to other one-dimensional constrained
interfaces.

In the remainder of this paper, we first review previous
work relevant to our research. We then introduce the design
process for deriving the 1D Handwriting gestures. We then
report three user studies that examine the performance of
1D Handwriting for inputting letters and words. We finally
conclude our research with discussion of limitations and
future search directions.

RELATED WORK

Letter input on constrained interfaces

H4-Writer [16] uses four buttons to input letters (base 4),
and leverages Huffman coding to minimize key sequences
by considering letter frequency. A 20.4 WPM text entry rate
could be achieved after ten 35-50 minutes practice sessions.
Meanwhile, a gesture-based version of H4-Writer [3] could
achieve 5.3-6.6 WPM using a touchpad and a Wiimote.

Multi-step interaction is another means for inputting letters
on constrained user interface. GesText [11] allows users to
input letters (e.g. with a Wiimote) with two-step directional
gestures (5.4 WPM) (Figure 1, left and middle). LURD-
Writer [7] uses horizontal and vertical movements of cursor
to recursively reduce the letter range to the target one (8
WPM) (Figure 1, right). Swipeboard [6] divides the
QWERTY keyboard on a very small touchscreen into nine
regions. A first swipe specifies the region, and a second
specifies the character within that region.

o ” [(ABC/DEF|[GHI
Fe v dNIK#LM#%NO®PQ
e ] RS TUVWXYZ

P T X Z

Figure 1. Matrix-based layout and tri-center layout of GesText
(left and middle) [11]; LURD-Writer (right) [7]

Unistroke letters were first proposed for pen-based input.
Figure 2 shows some sample letters of two well-known
unistroke vocabularies. Unistrokes [8] was designed to be
fast to write, and less prone to recognition errors. Graffiti
[2] was designed to resemble handwritten Roman.
Researchers showed users could learn Graffiti in minutes
[15]; but after extensive training (twenty fifteen-phrase
sessions), Unistrokes could be significantly faster (15.8
WPM vs. 11.4 WPM) [5]. Unistroke letters could also be
used for eyes-free input on mobile devices [21] and for
gesturing in the air [17].
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oI

Figure 2. Sample gesture of Unistrokes (left) and Graffiti
(right) [5]

EdgeWrite [28] was originally proposed by Wobbrock et al.
to enable unistroke input while providing high accuracy and
motion stability for individuals with motor impairments.
The first version fixed a square hole over a touchscreen
where users traversed the edges and diagonals to input text
(Figure 3). Gesture recognition was performed based on the
sequence of corners that were hit. EdgeWrite’s alphabet was
designed to mimic its handwritten counterparts for quick
learning. Edgewrite could also be adapted to other input
devices such as joysticks and touchpads [26, 30], Trackball
[24], and spatial keys [29].

a b c d e f ] h i i
AL ZT 2
Figure 3. Sample gestures of Edgewrite [28]

UniGest [4] defined a gesture alphabet based on Wiimote
[23], where each gesture was designed to have at most two
primitive motions. Writing-with-joystick [10] defined
gestures based on on-boundary and off-boundary strokes.
Evaluation results showed text entry rate achieved 4.5
WPM after a brief learning session. For both techniques,

visual similarity to handwritten letters was the guideline for
designing the gestures of individual letters.

Word input on constrained interfaces

Ambiguous keyboards are widely used when the screen size
is too small to accommodate all letters or only a limited
number of signals (e.g. keys or gestures) are available due
to constraints from both the device and/or user. The idea is
to overload individual keys with more than one letter (e.g.
T9) and resolve word ambiguity by matching key sequence
to possible words in a predefined vocabulary. The mapping
of letters to keys can be done in different ways [18].

Gesture keyboards [12, 31] enable users to input a word
using a single unistroke gesture. The algorithm interprets
input using both language and gesture information. A
special advantage of gesture keyboard is that users do not
have to lift up the pen or finger between letters within one
word. Therefore, a gesture keyboard is suitable for mid-air
interaction (e.g. Vulture [17]) where inputting a delimiter is
difficult. MotionInput [19] realizes an ambiguous gesture
keyboard that arranges eight ambiguous keys into a circle.
Users traverse the keys to input words with a Leap Motion
controller.

One-dimensional text entry techniques already exist; all are
selection-based. The 1Line Keyboard [13] was proposed to
reduce the size of the screen occupied by the keyboard. It
reduces the QWERTY keyboard into one row containing
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eight keys, with each key overloaded with multiple letters.
The Minuum keyboard [21], based on 1Line Keyboard,
enables text entry on Google Glass. However, there is only
a demo video describing it; no implementation details nor
performance data are available. Circle keyboard [20]
organizes letters into a circle in alphabetical order. Users
rotate a Wiimote to select target letters. The text entry rate
was 10.2 WPM. Walmsley et al. [22] applied the source-
channel approach to Circle keyboard to allow fast and
imprecise input. Experiment results showed expert users
could reach 21WPM after 6.7 hours practicing.

In sum, an input interface can be constraint in terms of the
number of input signals (keys and usable gestures) or the
number of dimensions of the input space. In this work, we
target the constraint interface where touch can be performed
only in one-dimensional space. Besides, we focus on
handwriting approaches rather than selection-based ones for
text entry.

STUDY 1: DESIGN OF 1D HANDWRITING GESTURES
The goal was to gain an understanding about user
acceptance of 1D Handwriting gestures as well as the input
capacity of Google Glass, the device we used to experiment
our idea in this research. To achieve this, we first derived a
set of 1D Handwriting stroke gestures, and then asked
individual participant to assess their intuitiveness by
performing them on Google Glass. Based on the subjective
and objective results, we agreed on the design guidelines
for the final handwriting gestures, and revised our design.

Phase 1 —lInitial design of handwriting gestures

In our first trial, we adopted a user-participatory approach
[25]. We recruited eight participants and asked them to
design a set of one-dimensional gestures for Google Glass.
The process lasted for one hour for each participant to
design gestures for all twenty-six letters of the alphabet. In
the end, four participants proposed a code—based design,
while the other four proposed a handwriting design.
Unfortunately, none of the obtained gesture sets was
satisfactory, because they were not memorable. This result
revealed the difficulty of designing appropriate 1D
Handwriting stroke gestures, especially within a very
limited time. However, according to the post-experiment
interviews, participants (including those who proposed the
coding-based design) consistently agreed that the
handwriting design was much more recognizable and
memorable than the code-based design.

We then decided to design a set of handwriting stroke
gestures by ourselves. The guideline was to design a 1D
Handwriting stroke gesture for each letter to best mimic
their two-dimensional counterparts. Figure 4 summarizes
the handwriting gestures. For some letters, the design was
easy and intuitive. For example, the handwriting stroke
gesture of “w” should be a four-stroke gesture “back—
forward—back—forward”. However, for others it was not
an easy task since several letters were similar, if not
identical, when projected into a reduced one-dimensional
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space. In such cases, we designed strokes with more details
(e.g. adding a short stroke at the end to distinguish “q” from
“y”), or use a dot to distinguish them, such as “0” and “v”,
“b” and “k”, “i” and “s”, and “j” and “1”. The design of
handwriting gestures employed strokes of three levels of

lengths (i.e. short, medium and long) and a dot.

Figure 4. Handwriting gestures used in Study 1. Dots (“-”)
were included in this design. However, these were
consequently dropped in favor of faster input speed. Arrows
represent the directions for each sub-stroke in a gesture. They
are drawn continuously in a gesture.

Phase 2 — User assessment and data collection

Apparatus

We used Google Glass for this experiment. As shown in
Figure 5, there is a touchpad mounted on the right spectacle
frame. The touchpad (7.0 centimeters long and 0.8
centimeters wide) supports up to three touch points with an
input resolution of 1366x160. Although Google Glass is not
a strict 1D input device, the vertical space is very limited
for input. In addition, there is a virtual screen (resolution:
640%360) and a built-in speaker on the device. The Google
Glass system was XE 22 running on Android 4.4.4. We
developed a software that recorded all touch events,
including time and coordinate information.

Figure 5. The touchpad configuration of Google Glass

Design and procedure

Twelve participants (six males and six females; Age: 18-25)
were recruited from Tsinghua University campus. None had
previously used a Google Glass. The experiment took about
one hour to complete. At first, each participant was asked to
memorize the handwriting gesture set (Figure 4). Then, they
were instructed to perform these gestures (five times per
letter) on Google Glass at their comfortable speed. For
reference purposes, a sheet containing every letter-gesture
pair was placed beside participants in case they forgot a
gesture during the experiment. At the end of the
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experiment, participants rated the perceived memorability
of each individual gesture on a 5-point Likert scale. In total,
we collected 1560 handwriting gestures for 26 letters.

Results

Memorability. Although the overall handwriting strokes
resembled two-dimensional handwriting, the small
adjustments (i.e. short strokes and dots) made it difficult for
users to remember actual strokes. According to participants’
comments, the small adjustments seemed to be defined in
an arbitrary way in that no consistent rule could be drawn
out. Participants had to remember the strokes by heart.
Unfortunately, this was not easy given the limited time for
learning the stroke gestures. The fact that participants
constantly referred to the gesture sheet also confirmed this
difficulty. Moreover, participants’ subjective assessment on
memorability was diverse, even for the same handwriting
stroke gestures, (e.g. “q”, “h”, “g” etc.). This suggested
individual participants should have discrepant models for
interpreting the handwriting stroke gestures.

Input accuracy. It was difficult for participants to
distinguish between three levels of stroke length. Figure 6
shows the distribution of short, medium and long sub-
strokes after being normalized to the length of the longest
sub-stroke within a gesture. There was much overlap
between the three-level lengths of sub-strokes. In addition,
participants occasionally performed unintended hooks at the
beginning or end of a stroke, making short strokes even
more difficult to recognize by the algorithm. Therefore, we
intend to drop short strokes from our design and be in favor
of a two-level design of stroke length (medium and long).

Long
————— Medium
6 Short

0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1

Relative Length

Figure 6. Beta distribution for the relative lengths of long,
medium and short strokes.

Phase 3 — Final design of the handwriting gestures
Based on the above results, we decided to remove the
requirement of one-to-one mapping of gestures to letters,
which posed a major challenge for designing handwriting
stroke gestures with good memorability and usage
efficiency. Instead, we allowed a handwriting stroke gesture
to represent more than one letter if necessary. This decision
was inspired by an ambiguous keyboard that was also for
resolving the limitation of input resources (e.g. a keypad
with a small number of buttons). Based on the information
gathered during the initial design of the handwriting stroke
gestures, we formed the following guidelines for the gesture
design.
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(1) Mimic traditional handwriting: 1D Handwriting stroke
gestures should be easy to learn. By mimicking
traditional handwriting, the obtained strokes should be
easy to be remembered.

Minimize levels of stroke lengths: In order to perform
stroke gestures accurately and efficiently.

Minimize number of sub-strokes per letter: In order to
perform stroke gestures efficiently.

Single stroke input: In order to perform stroke gestures
efficiently.

2
)
“4)

The design goal was to obtain a comprehensive trade-off
between speed, accuracy, learnability and memorability to
provide immediate usage. One basic principle was to
promote simplicity rather than distinction. To achieve this,
we first designed a “best” stroke gesture for each individual
letter without concerning about ambiguity. We then
performed a few adjustments to limit the number of letters
in each group to reduce ambiguity and facilitate letter
selection within a group. We designed 1D Handwriting
stroke gestures to mimic the sub-stroke sequence in two-
dimensional handwriting and to be as succinct as possible.

( 7 awm W/

fgl T v comm

bl o F N
(oW W 1SN R o VT (01
dld i P v
Wi K G v

11l X1l

Figure 7. Gesture design for individual characters. The image
of Google Glass is placed to the left for reference. Red arrows
starting with a circle are the first strokes in traditional
handwriting. Letters “e”, “s”, “z” are rotated 90 degrees
counterclockwise. Black arrows represent the proposed design

for one-dimensional gestures.

i

Figure 7 illustrates the final stroke design for each letter.
The design was based on glyphs of lower-case letters since
most of these are performed with a single stroke. In total,
we designed 13 stroke gestures, which were mapped to the
26 letters of the alphabet. There were no more than four
letters associated with each handwriting stroke gesture. We
dealt differently with letters that lacked optimal mappings
in a one-dimensional space if mapped directly. For the
letters “e”, “z”, and “s”, their glyphs were first rotated 90
degrees counterclockwise and then mapped to a one-
dimensional space. Letter “x” has a two-stroke glyph. We
thus assigned the gesture of another two sub-stroke letter
“n” to it. We also introduce shorthand in the design. In
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traditional handwriting, letters “n”, “m”, and “p” start with
a backward (toward the body) stroke, while letter “d” ends
with a backward stroke. These strokes were eliminated in
our design for simplicity and usability.

THE TECHNIQUE

In this section, we describe the implementation details of
the technique used in 1D Handwriting. We first describe the
algorithm to recognize gestures, which estimates a posterior
probability of an observed gesture given by individual
letters. We then present our Bayesian algorithm to predict
target words by taking advantage of the language model.
We also describe the interaction design, for inputting
individual characters and words respectively.

Gesture recognition

The purpose is to estimate a posteriori probability of a
handwriting stroke input (s) given a stroke template (t),
rather than to discretely classify it into a specific template.
Note that according to our design, a stroke template may
represent more than one letter. We can then use the
estimated result to produce letter-level input and dictionary-
based word-level input.

The recognition algorithm has four steps:

Step #1: Filtering and segmentation.

We first identify the “turning points” in the stroke, these
occur when stroke direction changes. The starting and end
points of a stroke are two default turning points. Then we
proceed to eliminate consecutive turning points whose
distance is less than 20 pixels (Imm) as noise. Finally,
segmentation is performed based on the remaining turning
points. The derived sequence of sub-strokes is represented
as Sy ... Sp.

Step #2. Removal of unintentional strokes

In order to deal with unintentional hooks that usually occur
at the beginning and end of a handwriting gesture, we
remove the first and last sub-strokes that are less than 150
pixels (7.5 mm) in length.

Step #3. Normalization
We normalize the length of an individual sub-stroke (s;) by
dividing the length of the longest sub-stroke. Note that the
length of sub-strokes in the gesture templates are
normalized in advance.

Step #4. Computation of a posteriori probability

We only compute the template gestures whose number of
sub-strokes is equal to the derived gesture. The a posteriori
probability of other templates is set to zero. Furthermore,
we assume the estimation of individual normalized sub-
strokes to be independent from each other. We have

Plo =] | PGl

where the probability density function (PDF) of P(s;|t;) is
given according to the result of Study 1.

)
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Predicting target words

A user inputs a sequence of strokes (I = s; ...s,) to input
one word (w) from a vocabulary (V). The word has n
letters, that is, w =1, ...[,, . The algorithm predicts a
number of likely words based on the probability of gesture
input and language model. Similar to Goodman et al.’s
approach [9], the posterior probability of 7 given a word (w)
can be computed as follows:

P(w|I) =P(w,I) = P(I) 2)
Because we have no knowledge of I, we can compute
P(w,I) = P(w) x P(I/w) (€)

We then assume each letter input is independent from each
other. We have

Pw,1) = Pow) + | [ PCsilty )
i=1
That is,
Pw,1) = Pw) + | | Paile) ®)
i=1

where t(l;) is the stroke template of letter [;.

If no matches are found, the algorithm attempts to make
auto-completions by computing the probability of words
that have more letters than the input sequence. All predicted
words are sorted, according to their probability, and
presented to the user in descending order [27].

Interaction design

Figure 8 shows the interface of the 1D Handwriting system
on Google Glass that users can see on the virtual screen. It
is divided into three regions. The Text region (the middle
row) displays the input text. The Letter region (the top row)
displays the recognized letters. The Word region (the
bottom row) displays the five most likely words.

Letter region

Text region

late Word region

last

can

Figure 8. Interface design of 1D Handwriting

The handwriting stroke is rendered in real-time on a semi-
transparent overlay on top of Text region. The height of the
Text region is directly mapped to the entire touchable range
of the touchpad. The horizontal direction represents the
time line. Therefore, although the input is a one-
dimensional stroke gesture, users can still observe a two-
dimensional visual feedback of the handwriting stroke on
the screen, providing guidance during input.
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Input a word. Users input words by performing the
respective stroke gestures of each letter in sequence. Words
that most likely correspond to the current input (at most
five) are shown in the Word region. Users can directly
select the most likely word out of them by tapping the
touchpad with two fingers, or select the other words by
performing a two-finger movement to select the desired
word, followed by a two-finger tap to confirm. When a
word is selected, the system automatically appends a space
to the end.

Input a letter. The system is set by default to word input
mode. In order to input a letter, users have to place their
finger on the touchpad for 300ms (empirically determined)
after performing a stroke. At that point, the system will
switch to letter input mode (with the frame of the Letter
region highlighted) allowing users to move their finger on
the touchpad to select letters. Lifting the finger will confirm
the selection. This design offers a seamless one-finger
gesture for inputting letters.

For some letters, the handwriting stroke gesture is likely to
end near one of the edges of the touchpad, making further
movement in that direction difficult. To deal with this, the
system arranges letters in frequency order toward the
opposite direction of the last stroke, with the most
frequently used letter selected at the endpoint of the stroke.

Deletion of a letter is performed with a swipe-up gesture or
by clicking the camera button. According to our
observation, most users prefer to use the camera button.
Most likely due to the fact that a swipe-up gesture is
perpendicular to the main input direction, therefore not easy
to be performed on the touchpad.

A VARIATION OF THE 1LINE KEYBOARD

For the sake of comparison, we implemented a selection-
based keyboard, referring to 1Line Keyboard design [13],
an ambiguous keyboard based on QWERTY layout. As
shown in Figure 9, The interface and the interaction are
similar to 1D Handwriting except that a user inputs by
touch-selection, rather than 1D gesturing: Users manually
switch between letter mode and word mode with a swipe-
down gesture (in our experiment, the mode was not
switched). To input a letter, users swipe one finger to select
the ambiguous key, swipe two fingers to select the letter,
and then tap two fingers to confirm the selection. To input a
word, users swipe one finger to select an ambiguous key,
tap one finger to confirm the selection, swipe two fingers to
select a word, and then tap two fingers to confirm the
selection.

To improve target selection with the touchpad on Google
Glass, we implemented cursor acceleration. We used two
control/display ratios for slow and fast finger movements
respectively. We empirically determined the parameters so
that users could traverse the entire keyboard with a single
fast stroke or perform accurate selections with slower
strokes.
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Figure 9. A variation of 1Line Keyboard. The currently
selected key (“edc”) is highlighted. For consistency purposes,
the interface design is similar to 1D Handwriting.

Because both 1Line Keyboard and 1D Handwriting were
“ambiguous” for inputting words, we performed a
simulation to quantify their ability to specify target words.
We used a dictionary (with frequency data) derived from
the source code of the Android Keyboard. Figure 10
illustrates the results. Both 1D Handwriting and 1Line
Keyboard exhibited high Top-1 accuracy (over 95% for
vocabularies containing as many as 178,000 words). In the
experiments, we used the top 10,000 words as the

dictionary.
O N O L O O
S $ S oM § oM
LA S S S

100%
75%

50%

Accuracy

25%

0%
N
N

O
\90 &°
N

N
Dictionary Size

[l 1D Handwriting 1Line Keyboard

Figure 10. Accuracy for vocabularies of varying sizes

USER STUDY 2: INPUT LETTERS

In order to evaluate the performance of 1D Handwriting for
inputting letters, we compared its performance against that
of 1Line Keyboard.

Apparatus and participants

Sixteen participants (eight males and eight females; aged
from 18-30) were recruited from Tsinghua University
campus. None of them had previously used a Google Glass
before.

Figure 11. The experiment setting of User Study 2
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Figure 11 illustrates the experiment environment and
setting. The system displayed phrases for participants to
enter on a laptop PC. Participants sat approximately 0.5m
away from the laptop PC. They wore a Google Glass and
rested their elbow onto the desk while performing the
required inputs. The software on Google Glass logged and
synchronized all touch events during the experiment with
the laptop PC through Wi-Fi.

Design and Procedure

We used a within-subject design for this experiment. The
only one independent factor was the Technique employed
(1D Handwriting and 1Line Keyboard). The tested phrases
for each participant was randomly generated from
MacKenzie and Soukoreff's phrase set [14]. We used the
same phrases for the two techniques per participant, with
the order of phrases randomized. Each technique was tested
in one session. Sessions consisted of six blocks, with each
block containing two phrases for input. Subjects were
required to break after finishing a block. The first block was
ignored for practice. The presentation order of each
technique was counterbalanced.

Before the experiment, we introduced its goals to each
participant. We did not inform participants which of the two
techniques was ours. Moreover, we allowed subjects to
familiarize themselves with the user interface of Google
Glass, which took approximately five to ten minutes.
Before each technique was presented, participants had a
warm-up session with the tested text entry algorithms.
During the experiment, subjects were required to input
phrases as fast and accurate as possible. Finally, at the end
of the experiment, participants filled a NASA-TLX
evaluation form and provided feedback on the two
techniques. The total experiment lasted for roughly ninety
minutes.

The warm-up session of 1D Handwriting was longer than
that of 1Line Keyboard. For 1D Handwriting, a sheet
containing every letter-gesture pair was first presented to
participants. Next, we asked participants to memorize and
practice the strokes on Google Glass by correctly
performing each gesture five times. Finally, participants
were asked to complete a short practice task where all 26
letters appeared twice in a random order. As for the 1Line
Keyboard, participants practiced input phrases on Google
Glass until they became familiarized with the touch
movement control and other input gestures (e.g.
selecting/deleting a letter). Warm-up sessions of both
techniques lasted for about thirty minutes.

Results

The main dependent measures were input errors (corrected
and uncorrected errors), input speed and input time. To
provide more detailed information about 1D Handwriting,
we further divided its input time into elapsed time (time
between the completion of the previous stroke and the start
of the next stroke), gesturing time (time spent on
performing the handwriting stroke gesture) and selection
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time (time spent on performing the selection). It is
important to note that the elapsed time includes the
necessary pause between successive handwriting stroke
gestures (to complete a stroke gesture and reset the finger
location) and the time participants spent to recall the
handwriting stroke gestures.

Corrected and uncorrected errors
Figure 12 illustrates how the corrected and uncorrected
error rates migrated with blocks for letter-level input.

There was no significant effect of Technique on uncorrected
error ratio (Fy,5=1.76, p=.20). Both techniques exhibited
low uncorrected error ratios: 0.78% (SD=1.12%) for 1D
Handwriting and 0.48% (SD=0.65%) for 1Line Keyboard.
The reason was that participants tended to correct mistakes
if they noticed it on the virtual screen.

ANOVA showed significant effects of Technique
(F,15=68.92, p<.0001) and Block (F,=3.80, p<.01) on
corrected error ratio. The interaction effect of
TechniquexBlock was also significant (F4=4.22, p<.005).
Participants had more corrected errors with 1D Handwriting
than with 1Line Keyboard, 17.67% (SD=6.10%) vs. 5.51%
(SD=3.69%). However, through practice, participants could
perform better (i.e. having less corrected errors) (F460=4.68,
p<.005) with 1D Handwriting. In contrast, such a learning
effect for 1Line Keyboard was not significant (F44,=1.39,
p=29).
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Figure 12. The errors for both techniques with the statistical
testing results.

Input Speed

Figure 13 shows the text entry rates for both techniques
over the five blocks. The calculation of text entry rate
included the time users spent on correcting errors. On
average, participants input at 4.04 WPM (SD=0.58) with
1D Handwriting and 3.71 WPM (SD=0.46) with 1Line
Keyboard. If we considered only the last block, participants
input at 4.67 WPM (SD=0.61) with 1D Handwriting and
420 WPM (SD=0.61) with 1Line Keyboard. Hence, 1D
Handwriting was 8.9% faster than 1Line Keyboard in
average (Fi;5=5.31, p<.05), and 11.2% faster in the last
block (F;;s=8.70, p<.01). Meanwhile, we observed a
significant main effect of block on text entry rates for both
techniques (1D Handwriting: F4,=14.50, p<.0001; 1Line
Keyboard: F44=15.39, p<.0001), suggesting the learning
effect. There was no interaction effect of TechniquexBlock
(F460=1.37, p=.26) on text entry rates.
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Speed (WPM)

Block
O 1Line Keyboard

# 1D Handwriting

Figure 13. Text entry rates across blocks for 1D Handwriting

and 1Line Keyboard. There was a sudden performance drop

in the 4™ block for 1D Handwriting. We interpret it as a noise
resulted from uncontrolled factors in the experiment.

Input times of 1D Handwriting

In average, elapsed time was 1397ms (SD=354), gesturing
time was 504ms (SD=96), and selection time was 1206ms
(SD=151) including 300ms spent on switching modes.
Elapsed time, gesturing time and selection time accounted
for 45%, 16% and 39% of the input time respectively. That
is, the majority of input time was spent on considering the
next letter, recalling the handwriting stroke gesture, and
selecting letters. Fortunately, with practice, all input times
could be improved (Figure 14): RM-ANOVA showed
significant effects of Block on elapsed time (F;6=8.73,
p<.0001), gesturing time (F4¢= 5.41, p<.001) and selection
time (F460= 11.04, p<.0001). A noteworthy aspect is that the
learning curve of gesturing time was not as steep as that of
elapsed time and selection time.

1800

1350 O\\M\

900

Time (ms)

1 2 3 4 5
Block

O Elapsed time Gesturing time Selection time

Figure 14. Elapsed time, gesturing time and selection time
across five blocks for letter-level 1D Handwriting in Study 2.

Furthermore, analysis of elapsed time, gesturing time and
selection time for individual letters was conducted for each
letter. From Figure 15, we can see that, gesturing time
increased as the number of sub-strokes or the complexity of
the structure of sub-strokes increased (with both long and
medium length sub-strokes). Selection time was primarily
dependent on the number of letters represented by input
gestures as well as the order of letters inside a group. There
was no obvious pattern for elapsed time. However, we
detected that for some letters that were seldom input (e.g.
“z”) elapsed time was relatively high, indicating that
participants spent more time recalling its handwriting stroke
gesture. Interestingly, for the letter 57, although the elapsed
time was short, both gesturing time and selection time were
rather large.
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Figure 15. Elapsed time, selection time and gesturing time for
different letters. The colors separate letters with respect to the
same handwriting stroke for easy comparison.

Subjective feedbacks

Nonparametric Wilcoxon signed-rank tests suggested that
compared to 1Line Keyboard, participants felt 1D
Handwriting to be more mentally demanding (z=-52.5,
p<.0001). On the other hand, they gave 1D Handwriting a
much better evaluation (z=-42.0, p<.01). Differences on
other measures were not statistically significant.

Although at first it seemed difficult to remember and learn
to perform the handwriting stroke gestures, participants
managed to quickly master the technique in less than ten
practice rounds for each letter. In the post-experiment
interview, every participant reported 1D Handwriting stroke
gestures to be intuitive to recognize and easy to remember.
In addition, most participants reported higher levels of eye
fatigue with 1Line Keyboard since more focus was required
on the keyboard to control cursor movement. In contrast,
1D Handwriting required a lesser degree of focus on the
screen while performing stroke gestures, especially when
participants were more familiar with the stroke gestures.
These findings suggested eyes-free input was possible with
1D Handwriting.

USER STUDY 3: INPUT WORDS

The goal of this study was to evaluate and compare 1D
Handwriting and 1Line Keyboard for inputting words. The
sixteen participants who participated in Study 2 were
recruited again for this study. The experiment took place
seven to fourteen days after Study 2. We used the same
apparatus as in Study 2.

The design and procedure were similar to Study 2, except
that participants performed word-level input as opposed to
letter-level input. In this experiment, participants were
required to enter 18 phrases (divided into nine blocks).

Prior to the experiment, participants were asked to recall the
handwriting stroke gestures for all 26 letters of the alphabet,
and to write them down on a piece of paper. Results showed
that participants could correctly recall 89% of the stroke
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gestures. Four letters that participants could not remember
well were “x”, “d”, “5” and “t”. Considering the limited
training each participant had (no more than 20 times for
each letter in average) and the interval of seven to fourteen
days, this result positively indicated the good memorability

of 1D Handwriting stroke gestures.

Participants familiarized themselves with the techniques in
a warm-up session before the task, which lasted around ten
to fifteen minutes for each technique. Participants were
required to input phrases as fast and accurate as possible.
The total experiment lasted for about eighty minutes.

Results

The main dependent measures were input errors (corrected
and uncorrected errors) and input speed. All data are with 2
standard deviations. Therefore, no outliers were removed.

Corrected and uncorrected errors
Figure 16 illustrates how the corrected and uncorrected
error rates migrated with blocks for word-level input.

There was no significant effect of Technique on uncorrected
error ratio (F;;s=1.21, p=.29). Both techniques exhibited
low uncorrected error ratios: 0.25% (SD=0.07%) for 1D
Handwriting and 0.07% (SD=1.42%) for 1-Line Keyboard.

We observed a marginal significant effect of Technique on
corrected error ratio (F;;5=4.51, p=.051). The corrected
error ratio was 17.38% (SD=8.67%) for 1D Handwriting
and 11.87% (SD=5.81%) for 1Line Keyboard. There was a
significant effect of Block on corrected error ratio
(F7105=1.15, p=.034), suggesting the learning effect. No
significant interaction effect of Technique X Block
(F7.105=0.46, p=.86) was observed.
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‘O Corrected (1Line Keyboard)

Uncorrected (1D Handwriting)
‘O Uncorrected (1Line Keyboard)

Figure 16. The corrected and uncorrected error rates for both
techniques across blocks

Input Speed
Figure 17 shows the text entry rates for both techniques
over the eight blocks.

In average, participants input at 8.84 WPM (SD=2.79) with
1D Handwriting and 7.14 WPM (SD=1.21) with 1Line
Keyboard. That is, 1D Handwriting was 23.8% faster than
1Line Keyboard in average (F; ;5= 6.92, p<.05). If only the
last two blocks were considered, text entry rates raised to
9.72 WPM (SD=2.67) for 1D Handwriting and 8.10 WPM
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(SD=1.34) for 1Line Keyboard. That is, 1D Handwriting
was 20.0% faster than 1Line Keyboard in the last two
blocks (F; 15=5.86, p<.05).

ANOVA also showed a significant main effect of Block on
text entry rates (F;,05=11.43, p<.0001), suggesting the
learning effect. There was no significant interaction effect
of TechniquexBlock on text entry rates (F70s=1.25, p=.28).

Speed (WPM)

Block

4 1D Handwriting O 1Line Keyboard

Figure 17. The learning curve of both techniques.

Input times

On average, the elapse time of 1D Handwriting was 289 ms
(SD=66) longer than that of 1Line Keyboard, which could
be interpreted as the recall time for gestures. In addition,
when compared to the slide time (1,593 ms, SD=132) of
1Line Keyboard, the gesturing time (427 ms, SD=38) for
1D Handwriting was much smaller. Similar to the results of
Study 2, we observed significant learning effects for both
techniques (p<.05), as shown in Figure 18.
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Slide time (1Line Keyboard)

Elapsed time (1D Handwriting)
‘O Gesturing time (1D Handwriting)

Figure 18. Slide time, gesturing time and elapsed time and
across eight blocks for both techniques in Study 3.

Auto-completion

Auto-completion accounted for 6.51% of input letters for
1D Handwriting and 38.10% for 1Line Keyboard. The
difference was statistically significant (F,,5=191.49,
p<.0001). In other words, if we did not consider letters
input via auto-completion, participants would have input
phrases at 8.30 WPM (SD=2.70) for 1D Handwriting, and
5.17 WPM (SD= 0.86) for 1-Line keyboard over all blocks.
The reason why participants took more advantage of auto-
completion for 1Line Keyboard was as follows: With 1D
Handwriting, as participants performed the handwriting
stroke gestures, they tended to look at the test phrases on
the laptop PC screen instead of the Google Glass display.
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They only turned to the virtual screen whenever they
needed to select words. In contrast, with 1Line Keyboard,
participants constantly looked at the virtual screen to
control cursor movement. Therefore, it was more likely for
participants to notice the auto-completion suggestions. In
the post-experiment interview, we confirmed this difference
with participants. We think in actual real-life scenarios,
participants may be more likely to take full advantage of the
auto-completion function with 1D Handwriting by having
their eyes rested on the virtual screen.

USER STUDY 4: EXTENSIVE TRAINING

The goal of this study was to estimate how fast a user could
be following extensive training. To achieve this, we asked
five participants who participated the Study 3 to repeatedly
input a single phrase (randomly selected from MacKenzie
and Soukoreff’s phrase set [14]) for twelve times. The first
two trials were ignored as practice. By focusing on a small
number of words, the training time could be greatly reduced
[6]. However, it is important to note that given the practice
was based on a single phrase, the obtained speed could only
served as a rough estimation. In this study, we switched off
auto-completion so that participants had to input each letter
of a word with handwriting stroke gestures.

Block
Figure 19. The learning curve of 1D Handwriting in Study 4.

Results showed the mean text entry rate could reach 19.61
WPM (SD=3.50) for the last phrase. The fastest participant
achieved 24 WPM, while the slowest participant achieved
16 WPM. As Figure 19 shows, there was a significant
learning effect of Block (Fo;=6.16, p<.0001) on text entry
rate. In average, participants entered 33.95% faster in the
last block than in the first one.

According to participants’ subjective feedback and our own
observations, a major factor for prohibiting high text entry
rates was the limited input capacity of Google Glass. When
performing fast gestures, the finger often went off or
overshot the touchpad. In such cases, participants had to
slow down finger movements to produce correct inputs.
Moreover, we confirmed with participants with regard to
the design of experiment: Participants thought the input
speed and experience obtained in the experiment could
reasonably reflect their proficient input speed if they had
used 1D Handwriting for a longer period.

LIMITATIONS AND FUTURE WORK
This research has the following limitations, which also
point to the direction of future works.
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First, our current 1D handwriting gestures were designed
for lower-case English letters. It is important to support
more character sets, such as numbers, punctuations and
non-Latin alphabets. One requirement is that there should
better be an easy-to-recognize mapping between 2D strokes
and 1D strokes; otherwise, the 1D strokes will be difficult
to remember. In addition, supporting more characters means
overloading a single stroke with more characters. One can
address this with mode selection to specify different
character sets. For example, on Google Glass, we can use
the “flip up” gesture to switch between upper case and
lower case, or even between numbers and punctuations

Second, regarding learnability, our research showed that
participants could learn the 1D strokes with a few practices,
and recall 89% of the strokes after one week. However,
there is still space for improvement. For example, we can
employ a well-designed learning interface (e.g. OctoPocus
[1]) to facilitate gesture learning. Moreover, it is interesting
to test the performance after long-term and extensive
training. Now, in all three experiments, the input speed of
1D Handwriting did not converge due to the limited
learning time.

Third, in this research, we confirmed the feasibility of 1D
handwriting. However, the current interaction design may
be not optimal for Google Glass: We did not take full
advantage of the vertical input and other input sensors (such
as the three-point touch and even the embedded motion
sensors) for input. It is also interesting to test 1D
handwriting technique on other 1D interfaces such as
smartphones with a curved-edged screen (e.g. Galaxy S6
edge), smart wristbands, or even 2D touchscreens.

Finally, in current research, we focus on 1D handwriting for
inputting letters. It is interesting to explore the possibility of
1D handwriting for word level input, i.e. 1D gesture
keyboard. This might further improve the text entry speed.

CONCLUSION

We explored the possibility of text entry on an emerging
form of constrained interface: the one-dimensional
interface. The basic idea was to project two-dimensional
handwriting strokes into a one-dimensional space. We
analyzed the usability issues of designing unistroke 1D
Handwriting  gestures.  Subsequently, we designed,
implemented and evaluated 1D Handwriting with Google
Glass. In user studies, both objective and subjective results
suggested 1D Handwriting stroke gestures were easy to
remember and efficient to use. Our research verified the
feasibility of 1D Handwriting.
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