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ABSTRACT 
We present 1D Handwriting, a unistroke gesture technique 
enabling text entry on a one-dimensional interface. The 
challenge is to map two-dimensional handwriting to a 
reduced one-dimensional space, while achieving a balance 
between memorability and performance efficiency. After an 
iterative design, we finally derive a set of ambiguous two-
length unistroke gestures, each mapping to 1-4 letters. To 
input words, we design a Bayesian algorithm that takes into 
account the probability of gestures and the language model. 
To input letters, we design a pause gesture allowing users to 
switch into letter selection mode seamlessly. Users studies 
show that 1D Handwriting significantly outperforms a 
selection-based technique (a variation of 1Line Keyboard) 
for both letter input (4.67 WPM vs. 4.20 WPM) and word 
input (9.72 WPM vs. 8.10 WPM). With extensive training, 
text entry rate can reach 19.6 WPM. Users’ subjective 
feedback indicates 1D Handwriting is easy to learn and 
efficient to use. Moreover, it has several potential 
applications for other one-dimensional constrained 
interfaces.  

Author Keywords 
Text entry; one-dimensional input; unistroke gestures.  

ACM Classification Keywords 
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faces — Input devices and strategies.  

INTRODUCTION 
Nowadays, many new smart personal devices are emerging. 
Such devices typically have a constrained input interface 
due to the limited size of the form factor. Consequently, 
text entry is difficult on these devices, which prohibits their 
broader use. In this paper, we focus on one-dimensional text 
entry for devices that have only one-dimensional input 

signals, or the input capacity on one dimension is much 
greater than that on the other. Examples include the 
touchable spectacle frame of a smart glass (e.g. Google 
Glass), the edge of a side screen of a smart phone (e.g. 
GALAXY Note Edge), and a smart wristband.  

Researchers have proposed various techniques to enable 
text entry on constrained interfaces (e.g. a keypad, a 
joystick, a tracking ball, and air interaction etc.). These 
techniques include coding letters [16], unistroke gestures 
[2], ambiguous keyboards [18], and gesture keyboards [12, 
31]. However, most of these techniques are for two-
dimensional constrained interfaces or interfaces with a 
limited number of buttons or gestures.  

In this paper, we present 1D Handwriting, which enables 
users to perform unistroke gestures on a one-dimensional 
interface to input text. We research, implement and evaluate 
1D Handwriting with Google Glass, a representative one-
dimensional input device. The biggest challenge 
encountered is that many letters look similar, if not 
identical, after projected into a reduced one-dimensional 
space. Therefore, our goal is to derive a set of one-
dimensional gestures that strikes a balance between 
memorability, input accuracy and input speed.  

After a careful and iterative design, our result is a set of 
ambiguous unistroke handwriting gestures based on sub-
stroke of two-level lengths. To complete the input, we 
design a one-dimensional gesture recognition algorithm that 
classifies input strokes in a probabilistic way. For letter 
input, we design a smooth transition gesture allowing the 
user to first gesture a stroke (representing a group of letters) 
and then select the target letter (within the group) without 
lifting his/her finger. For word input, we use a Bayesian 
approach that takes both the probability of gesture and the 
language model into account to interpret users’ input.   

To evaluate the performance of 1D Handwriting, we 
conduct three lab experiments. Results show that 1D 
Handwriting provides immediate usability: With limited 
training, users can achieve 4.67 WPM for letter level input 
(error rate = 0.78%) and 9.72 WPM for word level input 
(error rate = 0.25%). These speeds are comparable to those 
proposed for two-dimensional constrained interfaces, and 
significantly outperforms the one-dimensional selection-
based technique (the Baseline in our experiments) by 11.4% 
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eight keys, with each key overloaded with multiple letters. 
The Minuum keyboard [21], based on 1Line Keyboard, 
enables text entry on Google Glass. However, there is only 
a demo video describing it; no implementation details nor 
performance data are available. Circle keyboard [20] 
organizes letters into a circle in alphabetical order. Users 
rotate a Wiimote to select target letters. The text entry rate 
was 10.2 WPM. Walmsley et al. [22] applied the source-
channel approach to Circle keyboard to allow fast and 
imprecise input. Experiment results showed expert users 
could reach 21WPM after 6.7 hours practicing.  

In sum, an input interface can be constraint in terms of the 
number of input signals (keys and usable gestures) or the 
number of dimensions of the input space. In this work, we 
target the constraint interface where touch can be performed 
only in one-dimensional space. Besides, we focus on 
handwriting approaches rather than selection-based ones for 
text entry.  

STUDY 1: DESIGN OF 1D HANDWRITING GESTURES 
The goal was to gain an understanding about user 
acceptance of 1D Handwriting gestures as well as the input 
capacity of Google Glass, the device we used to experiment 
our idea in this research. To achieve this, we first derived a 
set of 1D Handwriting stroke gestures, and then asked 
individual participant to assess their intuitiveness by 
performing them on Google Glass. Based on the subjective 
and objective results, we agreed on the design guidelines 
for the final handwriting gestures, and revised our design.  

Phase 1 —Initial design of handwriting gestures 
In our first trial, we adopted a user-participatory approach 
[25]. We recruited eight participants and asked them to 
design a set of one-dimensional gestures for Google Glass. 
The process lasted for one hour for each participant to 
design gestures for all twenty-six letters of the alphabet. In 
the end, four participants proposed a code-based design, 
while the other four proposed a handwriting design. 
Unfortunately, none of the obtained gesture sets was 
satisfactory, because they were not memorable. This result 
revealed the difficulty of designing appropriate 1D 
Handwriting stroke gestures, especially within a very 
limited time. However, according to the post-experiment 
interviews, participants (including those who proposed the 
coding-based design) consistently agreed that the 
handwriting design was much more recognizable and 
memorable than the code-based design.  

We then decided to design a set of handwriting stroke 
gestures by ourselves. The guideline was to design a 1D 
Handwriting stroke gesture for each letter to best mimic 
their two-dimensional counterparts. Figure 4 summarizes 
the handwriting gestures. For some letters, the design was 
easy and intuitive. For example, the handwriting stroke 
gesture of “w” should be a four-stroke gesture “back—
forward—back—forward”. However, for others it was not 
an easy task since several letters were similar, if not 
identical, when projected into a reduced one-dimensional 

space. In such cases, we designed strokes with more details 
(e.g. adding a short stroke at the end to distinguish “q” from 
“y”), or use a dot to distinguish them, such as “o” and “v”, 
“b” and “k”, “i” and “s”, and “j” and “l”. The design of 
handwriting gestures employed strokes of three levels of 
lengths (i.e. short, medium and long) and a dot.  

 

Figure 4. Handwriting gestures used in Study 1. Dots (“·”) 
were included in this design. However, these were 

consequently dropped in favor of faster input speed. Arrows 
represent the directions for each sub-stroke in a gesture. They 

are drawn continuously in a gesture.  

Phase 2 — User assessment and data collection 

Apparatus 
We used Google Glass for this experiment. As shown in 
Figure 5, there is a touchpad mounted on the right spectacle 
frame. The touchpad (7.0 centimeters long and 0.8 
centimeters wide) supports up to three touch points with an 
input resolution of 1366×160. Although Google Glass is not 
a strict 1D input device, the vertical space is very limited 
for input. In addition, there is a virtual screen (resolution: 
640×360) and a built-in speaker on the device. The Google 
Glass system was XE 22 running on Android 4.4.4. We 
developed a software that recorded all touch events, 
including time and coordinate information.  

 

Figure 5. The touchpad configuration of Google Glass  

Design and procedure 
Twelve participants (six males and six females; Age: 18-25) 
were recruited from Tsinghua University campus. None had 
previously used a Google Glass. The experiment took about 
one hour to complete. At first, each participant was asked to 
memorize the handwriting gesture set (Figure 4). Then, they 
were instructed to perform these gestures (five times per 
letter) on Google Glass at their comfortable speed. For 
reference purposes, a sheet containing every letter-gesture 
pair was placed beside participants in case they forgot a 
gesture during the experiment. At the end of the 
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