We present 1D Handwriting, a unistroke gesture technique enabling text entry on a one-dimensional interface. The challenge is to map two-dimensional handwriting to a reduced one-dimensional space, while achieving a balance between memorability and performance efficiency. After an iterative design, we finally derive a set of ambiguous two-length unistroke gestures, each mapping to 1-4 letters. To input words, we design a Bayesian algorithm that takes into account the probability of gestures and the language model. To input letters, we design a pause gesture allowing users to switch into letter selection mode seamlessly. Users studies show that 1D Handwriting significantly outperforms a selection-based technique (a variation of 1Line Keyboard) for both letter input (4.67 WPM vs. 4.20 WPM) and word input (9.72 WPM vs. 8.10 WPM). With extensive training, text entry rate can reach 19.6 WPM. Users’ subjective feedback indicates 1D Handwriting is easy to learn and efficient to use. Moreover, it has several potential applications for other one-dimensional constrained interfaces.